CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt186_j_idt192",{id:"formSmash:upper:j_idt186:j_idt192",widgetVar:"widget_formSmash_upper_j_idt186_j_idt192",target:"formSmash:upper:j_idt186:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Non-selfadjoint operator functionsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2017 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet , 2017. , p. 21
##### Series

Research report in mathematics, ISSN 1653-0810 ; 60
##### Keyword [en]

Non-linear spectral problem, numerical range, pseudospectrum, resolvent estimate, equivalence after extension, block operator matrices, operator functions, operator pencil, spectral divisor, joint numerical range
##### National Category

Mathematical Analysis
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-143085ISBN: 978-91-7601-787-6 (print)OAI: oai:DiVA.org:umu-143085DiVA, id: diva2:1166532
##### Public defence

2018-01-19, MA 121, MIT-huset, Umeå, 09:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt648",{id:"formSmash:j_idt648",widgetVar:"widget_formSmash_j_idt648",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt657",{id:"formSmash:j_idt657",widgetVar:"widget_formSmash_j_idt657",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt667",{id:"formSmash:j_idt667",widgetVar:"widget_formSmash_j_idt667",multiple:true});
Available from: 2017-12-20 Created: 2017-12-15 Last updated: 2017-12-18Bibliographically approved
##### List of papers

Spectral properties of linear operators and operator functions can be used to analyze models in nature. When dispersion and damping are taken into account, the dependence of the spectral parameter is in general non-linear and the operators are not selfadjoint.

In this thesis non-selfadjoint operator functions are studied and several methods for obtaining properties of unbounded non-selfadjoint operator functions are presented. Equivalence is used to characterize operator functions since two equivalent operators share many significant characteristics such as the spectrum and closeness. Methods of linearization and other types of equivalences are presented for a class of unbounded operator matrix functions.

To study properties of the spectrum for non-selfadjoint operator functions, the numerical range is a powerful tool. The thesis introduces an optimal enclosure of the numerical range of a class of unbounded operator functions. The new enclosure can be computed explicitly, and it is investigated in detail. Many properties of the numerical range such as the number of components can be deduced from the enclosure. Furthermore, it is utilized to prove the existence of an infinite number of eigenvalues accumulating to specific points in the complex plane. Among the results are proofs of accumulation of eigenvalues to the singularities of a class of unbounded rational operator functions. The enclosure of the numerical range is also used to find optimal and computable estimates of the norm of resolvent and a corresponding enclosure of the ε-pseudospectrum.

1. Enclosure of the Numerical Range of a Class of Non-selfadjoint Rational Operator Functions$(function(){PrimeFaces.cw("OverlayPanel","overlay1120953",{id:"formSmash:j_idt723:0:j_idt737",widgetVar:"overlay1120953",target:"formSmash:j_idt723:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On equivalence and linearization of operator matrix functions with unbounded entries$(function(){PrimeFaces.cw("OverlayPanel","overlay1158143",{id:"formSmash:j_idt723:1:j_idt737",widgetVar:"overlay1158143",target:"formSmash:j_idt723:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Accumulation of Complex Eigenvalues of a Class of Analytic Operator Functions$(function(){PrimeFaces.cw("OverlayPanel","overlay1166491",{id:"formSmash:j_idt723:2:j_idt737",widgetVar:"overlay1166491",target:"formSmash:j_idt723:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Enclosure of the Numerical Range and Resolvent Estimates of Non-Selfadjoint Operator Functions$(function(){PrimeFaces.cw("OverlayPanel","overlay1166499",{id:"formSmash:j_idt723:3:j_idt737",widgetVar:"overlay1166499",target:"formSmash:j_idt723:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1974",{id:"formSmash:j_idt1974",widgetVar:"widget_formSmash_j_idt1974",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2027",{id:"formSmash:lower:j_idt2027",widgetVar:"widget_formSmash_lower_j_idt2027",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2028_j_idt2030",{id:"formSmash:lower:j_idt2028:j_idt2030",widgetVar:"widget_formSmash_lower_j_idt2028_j_idt2030",target:"formSmash:lower:j_idt2028:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});