Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A unique cysteine-rich zinc finger domain present in a majority of class II ribonucleotide reductases mediates catalytic turnover
Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
Show others and affiliations
2017 (English)In: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 292, no 46, p. 19044-19054Article in journal (Refereed) Published
Abstract [en]

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, used in DNA synthesis and repair. Two different mechanisms help deliver the required electrons to the RNR active site. Formate can be used as reductant directly in the active site, or glutaredoxins or thioredoxins reduce a C-terminal cysteine pair, which then delivers the electrons to the active site. Here, we characterized a novel cysteine-rich C-terminal domain (CRD), which is present in most class II RNRs found in microbes. The NrdJd-type RNR from the bacterium Stackebrandtia nassauensis was used as a model enzyme. We show that the CRD is involved in both higher oligomeric state formation and electron transfer to the active site. The CRD-dependent formation of high oligomers, such as tetramers and hexamers, was induced by addition of dATP or dGTP, but not of dTTP or dCTP. The electron transfer was mediated by an array of six cysteine residues at the very C-terminal end, which also coordinated a zinc atom. The electron transfer can also occur between subunits, depending on the enzyme's oligomeric state. An investigation of the native reductant of the system revealed no interaction with glutaredoxins or thioredoxins, indicating that this class II RNR uses a different electron source. Our results indicate that the CRD has a crucial role in catalytic turnover and a potentially new terminal reduction mechanism and suggest that the CRD is important for the activities of many class II RNRs.

Place, publisher, year, edition, pages
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC , 2017. Vol. 292, no 46, p. 19044-19054
Keywords [en]
metal ion-protein interaction, oligomerization, oxidation-reduction (redox), phylogenetics, ribonucleotide reductase, thioredoxin
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:umu:diva-142970DOI: 10.1074/jbc.M117.806331ISI: 000415848000027PubMedID: 28972190OAI: oai:DiVA.org:umu-142970DiVA, id: diva2:1166106
Available from: 2017-12-14 Created: 2017-12-14 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

fulltext(4602 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 4602 kBChecksum SHA-512
d565890487cf210d2e7057cc0891325eccecc60979d0aecf5e509133e6ffcd730a5da579d64c10035ac5070e0503786b4810360e4d036506c1a1af5288f38aed
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonna, Venkateswara RaoHofer, Anders
By organisation
Department of Medical Biochemistry and Biophysics
In the same journal
Journal of Biological Chemistry
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 136 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf