CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt172",{id:"formSmash:upper:j_idt172",widgetVar:"widget_formSmash_upper_j_idt172",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt179_j_idt182",{id:"formSmash:upper:j_idt179:j_idt182",widgetVar:"widget_formSmash_upper_j_idt179_j_idt182",target:"formSmash:upper:j_idt179:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Localised Radial Basis Function Methods for Partial Differential EquationsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2018 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2018. , p. 54
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1600
##### Keyword [en]

Radial basis function, Partition of unity, Computational finance, Option pricing, Credit default swap, Glaciology, Fluid dynamics, Non-Newtonian flow, Anisotropic RBF
##### National Category

Computational Mathematics
##### Research subject

Scientific Computing with specialization in Numerical Analysis
##### Identifiers

URN: urn:nbn:se:uu:diva-332715ISBN: 978-91-513-0157-0 (print)OAI: oai:DiVA.org:uu-332715DiVA, id: diva2:1159181
##### Public defence

2018-01-19, ITC 2446, Polacksbacken, Lägerhyddsvägen 2, Uppsala, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt603",{id:"formSmash:j_idt603",widgetVar:"widget_formSmash_j_idt603",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt618",{id:"formSmash:j_idt618",widgetVar:"widget_formSmash_j_idt618",multiple:true});
Available from: 2017-12-14 Created: 2017-11-21 Last updated: 2018-03-08
##### List of papers

Radial basis function methods exhibit several very attractive properties such as a high order convergence of the approximated solution and flexibility to the domain geometry. However the method in its classical formulation becomes impractical for problems with relatively large numbers of degrees of freedom due to the ill-conditioning and dense structure of coefficient matrix. To overcome the latter issue we employ a localisation technique, namely a partition of unity method, while the former issue was previously addressed by several authors and was of less concern in this thesis.

In this thesis we develop radial basis function partition of unity methods for partial differential equations arising in financial mathematics and glaciology. In the applications of financial mathematics we focus on pricing multi-asset equity and credit derivatives whose models involve several stochastic factors. We demonstrate that localised radial basis function methods are very effective and well-suited for financial applications thanks to the high order approximation properties that allow for the reduction of storage and computational requirements, which is crucial in multi-dimensional problems to cope with the curse of dimensionality. In the glaciology application we in the first place make use of the meshfree nature of the methods and their flexibility with respect to the irregular geometries of ice sheets and glaciers. Also, we exploit the fact that radial basis function methods are stated in strong form, which is advantageous for approximating velocity fields of non-Newtonian viscous liquids such as ice, since it allows to avoid a full coefficient matrix reassembly within the nonlinear iteration.

In addition to the applied problems we develop a least squares radial basis function partition of unity method that is robust with respect to the node layout. The method allows for scaling to problem sizes of a few hundred thousand nodes without encountering the issue of large condition numbers of the coefficient matrix. This property is enabled by the possibility to control the coefficient matrix condition number by the rate of oversampling and the mode of refinement.

1. Radial basis function partition of unity methods for pricing vanilla basket options$(function(){PrimeFaces.cw("OverlayPanel","overlay892965",{id:"formSmash:j_idt656:0:j_idt663",widgetVar:"overlay892965",target:"formSmash:j_idt656:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. BENCHOP—The BENCHmarking project in Option Pricing$(function(){PrimeFaces.cw("OverlayPanel","overlay848689",{id:"formSmash:j_idt656:1:j_idt663",widgetVar:"overlay848689",target:"formSmash:j_idt656:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Radial basis function partition of unity operator splitting method for pricing multi-asset American options$(function(){PrimeFaces.cw("OverlayPanel","overlay920142",{id:"formSmash:j_idt656:2:j_idt663",widgetVar:"overlay920142",target:"formSmash:j_idt656:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Pricing derivatives under multiple stochastic factors by localized radial basis function methods$(function(){PrimeFaces.cw("OverlayPanel","overlay1156673",{id:"formSmash:j_idt656:3:j_idt663",widgetVar:"overlay1156673",target:"formSmash:j_idt656:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Inuence of jump-at-default in IR and FX on Quanto CDS prices$(function(){PrimeFaces.cw("OverlayPanel","overlay1156672",{id:"formSmash:j_idt656:4:j_idt663",widgetVar:"overlay1156672",target:"formSmash:j_idt656:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. A meshfree approach to non-Newtonian free surface ice flow: Application to the Haut Glacier d'Arolla$(function(){PrimeFaces.cw("OverlayPanel","overlay1057688",{id:"formSmash:j_idt656:5:j_idt663",widgetVar:"overlay1057688",target:"formSmash:j_idt656:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Anisotropic radial basis function methods for continental size ice sheet simulations$(function(){PrimeFaces.cw("OverlayPanel","overlay1156674",{id:"formSmash:j_idt656:6:j_idt663",widgetVar:"overlay1156674",target:"formSmash:j_idt656:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. A least squares radial basis function partition of unity method for solving PDEs$(function(){PrimeFaces.cw("OverlayPanel","overlay1077950",{id:"formSmash:j_idt656:7:j_idt663",widgetVar:"overlay1077950",target:"formSmash:j_idt656:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1735",{id:"formSmash:j_idt1735",widgetVar:"widget_formSmash_j_idt1735",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1898",{id:"formSmash:lower:j_idt1898",widgetVar:"widget_formSmash_lower_j_idt1898",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1900_j_idt1902",{id:"formSmash:lower:j_idt1900:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1900_j_idt1902",target:"formSmash:lower:j_idt1900:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});