Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Use of Machine Learningin Industrial Quality Control
KTH, School of Industrial Engineering and Management (ITM), Production Engineering.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
The Use of Machine Learningin Industrial Quality Control (English)
Place, publisher, year, edition, pages
2017.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-216163OAI: oai:DiVA.org:kth-216163DiVA, id: diva2:1150596
Examiners
Available from: 2017-10-19 Created: 2017-10-19 Last updated: 2017-10-19Bibliographically approved

Open Access in DiVA

fulltext(1454 kB)76 downloads
File information
File name FULLTEXT01.pdfFile size 1454 kBChecksum SHA-512
0db5b1708b23bb8ab3e6a9b19cccda058fcbf781e7cbfd144ada17240c04affa3a154ba91e7902800cf2762bd1e004af93230c5b485b7c6d2b8f7516bd497f9e
Type fulltextMimetype application/pdf

By organisation
Production Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 76 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 265 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf