Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Deep neural networks and fraud detection
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Mathematics, Applied Mathematics and Statistics.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2017. , p. 41
Series
U.U.D.M. project report ; 2017:38
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:uu:diva-331833OAI: oai:DiVA.org:uu-331833DiVA, id: diva2:1150344
Educational program
Master Programme in Mathematics
Supervisors
Examiners
Available from: 2017-10-18 Created: 2017-10-18 Last updated: 2017-10-18Bibliographically approved

Open Access in DiVA

fulltext(1712 kB)209 downloads
File information
File name FULLTEXT01.pdfFile size 1712 kBChecksum SHA-512
0f3849e8a4f486fb654b79faf96cb61e32c8e247266d7f0ca8f4b9ec163471944b3e767bad570efa5280c5ccf4a55421871d0ebc366d589e1d7bc745fe5e50ac
Type fulltextMimetype application/pdf

By organisation
Applied Mathematics and Statistics
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 209 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 315 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf