Change search
CiteExportLink to record
Permanent link

Direct link
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Luminescence blinking of a Si quantum dot in a SiO2 shell
KTH, School of Information and Communication Technology (ICT), Microelectronics and Applied Physics, MAP.ORCID iD: 0000-0003-2562-0540
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.
KTH, School of Information and Communication Technology (ICT), Microelectronics and Information Technology, IMIT.ORCID iD: 0000-0002-5260-5322
2005 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 71, no 11, 115331-1-115331-5 p.Article in journal (Refereed) Published
Abstract [en]

The phenomenon of on-off luminescence intermittency - blinking - in silicon nanocrystals was studied using a single-dot microphotoluminescence technique. From recordings of the luminescence intensity trace, on- and off-time distributions were extracted revealing exponential behavior, as expected for systems with blinking of a purely random nature. The corresponding switching rates for on-off and off-on processes exhibit different dependence on the excitation intensity. While the on-off switching rate grows quadratically with the excitation, the inverse process is nearly pumping power independent. Experimental findings are interpreted in terms of a dot "charging" model, where a carrier may become trapped in the surrounding matrix due to thermal and Auger-assisted processes. Observed blinking kinetics appear to be different from that of porous silicon particles.

Place, publisher, year, edition, pages
The American Physical Society , 2005. Vol. 71, no 11, 115331-1-115331-5 p.
Keyword [en]
silicon, silicon dioxide, analytic method, article, comparative study, crystal structure, kinetics, luminescence, mathematical model, photoluminescence, quantum dot, recording
National Category
Condensed Matter Physics Physical Sciences
URN: urn:nbn:se:kth:diva-6698DOI: 10.1103/PhysRevB.71.115331ISI: 000228065500106Scopus ID: 2-s2.0-20044378177OAI: diva2:11479
QC 20100921Available from: 2012-01-18 Created: 2006-12-29 Last updated: 2012-01-18Bibliographically approved
In thesis
1. Synthesis and properties of single luminescent silicon quantum dots
Open this publication in new window or tab >>Synthesis and properties of single luminescent silicon quantum dots
2006 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Silicon is an ubiquitous electronic material and the discovery of strong room temperature luminescence from porous Si in 1990 raised hopes it may find a new lease of life in the emerging field of optoelectronics. First, the luminescence was shown to be emitted from nanostructures remained in a porous Si network. Later the same emission was shown from Si nanocrystals and the concept of a Si quantum dot emerged. Yet a number of different models have been proposed for the origin of light emission. Some involved interface states between a Si nanocrystal and the surrounding shell, while others considered the effect of quantum confinement in an indirect bandgap semiconductor.

In this work a single Si nanocrystal was addressed to shed light on the mechanism of luminescence. Nanocrystals were prepared using e-beam lithography with subsequent etching and oxidation of silicon nanopillars. In particular, the non-uniform oxidation in self-limiting regime was successfully used to form a single nanocrystal inside nanopillars. This preparation method allowed optical probing of a single nanocrystal with far-field optics.

Results revealed sharp luminescence spectra at low temperatures with a linewidth less than the corresponding thermal broadening. This property is a signature of energy level discreetness, which is, in turn, a straightforward consequence of the quantum confinement model. Another effect observed was a random on-off blinking, which is also regarded as a hallmark of single fluorescent objects. This effect appeared to be dependent on the excitation power density suggesting the involvement of Auger-assisted ionization in the dynamics of nanocrystal luminescence. In addition, it was shown how a change in the optical mode density affects the main parameters of luminescence from Si nanocrystals, such as the radiative lifetime, the quantum efficiency and the total yield.

Finally, in order to clarify the influence of morphological properties, such as size or shape, of a Si quantum dot on its luminescence, combined low-temperature photoluminescence and transmission electron microscopy investigations were initiated. A method was developed using focused ion beam preparation for such a joint characterization.

To conclude, the work gives support to the quantum confinement effect in explaining the light emission mechanism from nano-sized Si, as well as highlights the importance of morphological structure in the luminescence process.

Place, publisher, year, edition, pages
Stockholm: KTH, 2006. 55 p.
Trita-ICT/MAP, 2007:1
National Category
Condensed Matter Physics
urn:nbn:se:kth:diva-4254 (URN)91-7178-533-7 (ISBN)
Public defence
2007-01-19, Aula N2, Electrum-3, Isafjordsgatan 28, Kista, 10:15
QC 20100922Available from: 2006-12-29 Created: 2006-12-29 Last updated: 2011-10-11Bibliographically approved

Open Access in DiVA

fulltext(173 kB)