Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Water-Cement Ratio on Plastic Shrinkage Cracking in Self-Compacting Concrete
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0001-8586-2651
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.ORCID iD: 0000-0002-3997-3083
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Structural and Fire Engineering.
2017 (English)In: Proceedings of the 23rd Nordic Concrete Research Symposium, Oslo, Norway: Nordic Concrete Federation , 2017Conference paper, Published paper (Refereed)
Abstract [en]

Plastic shrinkage cracking is a mechanical phenomenon that occurs in the first few hours after casting the concrete in its mould. It is commonly believed that rapid and excessive moisture loss of the fresh concrete, mainly due to evaporation, plays a decisive role in the early age shrinkage. However, it is not always possible to justify all the plastic shrinkage incidents based on water evaporation solely. Instead, it seems that and interconnected correlation between evaporation, capillary pressure and hydration rate may offer better explanation. In this paper effect of water-cement (w/c) ratio on plastic shrinkage cracking of self-compacting concrete (SCC) is investigates. Four recipes with different w/c ratios (0.38, 0.45, 0.55 and 0.67) are tested by using Ring test method (NT BUILD 433). During the experiments evaporation, capillary pressure and internal temperature of the specimens were recorded from 60 minutes after casting up to 18 hours, at which the length and width of the cracks were measured. The results show lower risk of cracking when w/c ratio is between 0.45 to 0.55. However, the specimens with 0.38 and 0.67 w/c ratio experienced higher cracking tendency, especially the latter, in which severe cracking was observed.

Place, publisher, year, edition, pages
Oslo, Norway: Nordic Concrete Federation , 2017.
National Category
Infrastructure Engineering
Research subject
Structural Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-65992ISBN: 978-82-8208-056-9 (print)OAI: oai:DiVA.org:ltu-65992DiVA, id: diva2:1147569
Conference
23th Symposium on Nordic Concrete Research & Developement, Aalborg, Denmark, 21 - 23 August 2017
Available from: 2017-10-06 Created: 2017-10-06 Last updated: 2018-03-28Bibliographically approved

Open Access in DiVA

fulltext(485 kB)192 downloads
File information
File name FULLTEXT01.pdfFile size 485 kBChecksum SHA-512
9bb4f9aa3c6a663584776a16f7ba5ed904d8fb117b56a96c5bd522c485ad0f7b42ad29472e16e7e01d88e05d02616676cf6bf60033b98308a7bdaf786dbec177
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Sayahi, FaezEmborg, MatsHedlund, Hans
By organisation
Structural and Fire Engineering
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 192 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 124 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf