CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt170",{id:"formSmash:upper:j_idt170",widgetVar:"widget_formSmash_upper_j_idt170",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt178_j_idt181",{id:"formSmash:upper:j_idt178:j_idt181",widgetVar:"widget_formSmash_upper_j_idt178_j_idt181",target:"formSmash:upper:j_idt178:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Relativistic theory of laser-induced magnetization dynamicsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Uppsala: Acta Universitatis Upsaliensis, 2017. , p. 115
##### Series

Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1558
##### Keywords [en]

Relativistic quantum electrodynamics, magneto-optics, spin-orbit coupling, ultrafast demagnetization, inverse Faraday effect, magnetic inertia, Gilbert damping
##### National Category

Condensed Matter Physics Atom and Molecular Physics and Optics
##### Research subject

Physics
##### Identifiers

URN: urn:nbn:se:uu:diva-315247ISBN: 978-91-513-0070-2 (print)OAI: oai:DiVA.org:uu-315247DiVA, id: diva2:1139943
##### Public defence

2017-10-27, Polhemsalen, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt825",{id:"formSmash:j_idt825",widgetVar:"widget_formSmash_j_idt825",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt837",{id:"formSmash:j_idt837",widgetVar:"widget_formSmash_j_idt837",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt852",{id:"formSmash:j_idt852",widgetVar:"widget_formSmash_j_idt852",multiple:true}); Available from: 2017-10-03 Created: 2017-09-11 Last updated: 2017-10-18
##### List of papers

Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization.

In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes *all* relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain *coherent ultrafast magnetism*, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with *ab initio* magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization.

Employing the *ab initio* relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is *antisymmetric* in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only *asymmetric* for ferromagnets.

1. Ab initio investigation of light-induced relativistic spin-flip effects in magneto-optics$(function(){PrimeFaces.cw("OverlayPanel","overlay826091",{id:"formSmash:j_idt1002:0:j_idt1010",widgetVar:"overlay826091",target:"formSmash:j_idt1002:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Relativistic interaction Hamiltonian coupling the angular momentum of light and the electron spin$(function(){PrimeFaces.cw("OverlayPanel","overlay859212",{id:"formSmash:j_idt1002:1:j_idt1010",widgetVar:"overlay859212",target:"formSmash:j_idt1002:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. New relativistic Hamiltonian: the Angular MagnetoElectric coupling$(function(){PrimeFaces.cw("OverlayPanel","overlay1077293",{id:"formSmash:j_idt1002:2:j_idt1010",widgetVar:"overlay1077293",target:"formSmash:j_idt1002:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert equation of spin dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay1050755",{id:"formSmash:j_idt1002:3:j_idt1010",widgetVar:"overlay1050755",target:"formSmash:j_idt1002:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals$(function(){PrimeFaces.cw("OverlayPanel","overlay1037338",{id:"formSmash:j_idt1002:4:j_idt1010",widgetVar:"overlay1037338",target:"formSmash:j_idt1002:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Signatures of relativistic spin-light coupling in magneto-optical pump-probe experiments$(function(){PrimeFaces.cw("OverlayPanel","overlay1094836",{id:"formSmash:j_idt1002:5:j_idt1010",widgetVar:"overlay1094836",target:"formSmash:j_idt1002:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Relativistic theory of magnetic inertia in ultrafast spin dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay1133799",{id:"formSmash:j_idt1002:6:j_idt1010",widgetVar:"overlay1133799",target:"formSmash:j_idt1002:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

8. Unified relativistic theory of magnetization dynamics with spin-current tensors$(function(){PrimeFaces.cw("OverlayPanel","overlay1135076",{id:"formSmash:j_idt1002:7:j_idt1010",widgetVar:"overlay1135076",target:"formSmash:j_idt1002:7:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1878",{id:"formSmash:j_idt1878",widgetVar:"widget_formSmash_j_idt1878",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1931",{id:"formSmash:lower:j_idt1931",widgetVar:"widget_formSmash_lower_j_idt1931",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1932_j_idt1934",{id:"formSmash:lower:j_idt1932:j_idt1934",widgetVar:"widget_formSmash_lower_j_idt1932_j_idt1934",target:"formSmash:lower:j_idt1932:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});