CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt172",{id:"formSmash:upper:j_idt172",widgetVar:"widget_formSmash_upper_j_idt172",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt179_j_idt182",{id:"formSmash:upper:j_idt179:j_idt182",widgetVar:"widget_formSmash_upper_j_idt179_j_idt182",target:"formSmash:upper:j_idt179:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Hopf Invariants in Real and Rational Homotopy TheoryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2017 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: Department of Mathematics, Stockholm University , 2017.
##### Keyword [en]

Rational homotopy theory, Real homotopy theory, operads, Hopf invariants
##### National Category

Geometry
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:su:diva-146246ISBN: 978-91-7649-980-1 (print)ISBN: 978-91-7649-981-8 (electronic)OAI: oai:DiVA.org:su-146246DiVA, id: diva2:1136442
##### Public defence

2017-10-27, sal 14, hus 5, Kräftriket, Roslagsvägen 101, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt603",{id:"formSmash:j_idt603",widgetVar:"widget_formSmash_j_idt603",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt611",{id:"formSmash:j_idt611",widgetVar:"widget_formSmash_j_idt611",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt618",{id:"formSmash:j_idt618",widgetVar:"widget_formSmash_j_idt618",multiple:true});
##### Note

##### List of papers

In this thesis we use the theory of algebraic operads to define a complete invariant of real and rational homotopy classes of maps of topological spaces and manifolds. More precisely let f,g : M -> N be two smooth maps between manifolds M and N. To construct the invariant, we define a homotopy Lie structure on the space of linear maps between the homology of M and the homotopy groups of N, and a map mc from the set of based maps from M to N, to the set of Maurer-Cartan elements in the convolution algebra between the homology and homotopy. Then we show that the maps f and g are real (rational) homotopic if and only if mc(f) is gauge equivalent to mc(g), in this homotopy Lie convolution algebra. In the last part we show that in the real case, the map mc can be computed by integrating certain differential forms over certain subspaces of M. We also give a method to determine in certain cases, if the Maurer-Cartan elements mc(f) and mc(g) are gauge equivalent or not.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 3: Manuscript.

Available from: 2017-10-04 Created: 2017-08-28 Last updated: 2017-09-20Bibliographically approved1. Algebraic Hopf Invariants$(function(){PrimeFaces.cw("OverlayPanel","overlay1136432",{id:"formSmash:j_idt656:0:j_idt663",widgetVar:"overlay1136432",target:"formSmash:j_idt656:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Hopf invariants and differential forms$(function(){PrimeFaces.cw("OverlayPanel","overlay1136436",{id:"formSmash:j_idt656:1:j_idt663",widgetVar:"overlay1136436",target:"formSmash:j_idt656:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. HOMOTOPY MORPHISMS BETWEEN CONVOLUTION HOMOTOPY LIE ALGEBRAS$(function(){PrimeFaces.cw("OverlayPanel","overlay1136435",{id:"formSmash:j_idt656:2:j_idt663",widgetVar:"overlay1136435",target:"formSmash:j_idt656:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1735",{id:"formSmash:j_idt1735",widgetVar:"widget_formSmash_j_idt1735",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1898",{id:"formSmash:lower:j_idt1898",widgetVar:"widget_formSmash_lower_j_idt1898",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1900_j_idt1902",{id:"formSmash:lower:j_idt1900:j_idt1902",widgetVar:"widget_formSmash_lower_j_idt1900_j_idt1902",target:"formSmash:lower:j_idt1900:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});