Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cross-linked sulfur-selenium polymers as hole transporting materials in dye-sensitized solar cells and perovskite solar cells,
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry. kTH.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Applied Physical Chemistry.
2017 (English)In: ChemphotoChemArticle in journal (Refereed) In press
Abstract [en]

Novel inverse-vulcanized polymeric sulfur–selenium materials (SeS2:S:DIB, where DIB=1,3-diisopropenylbenzene) have been prepared and utilized for solid-state dye-sensitized solar cellsand perovskite solar cells. Under standard AM 1.5G illumination (1000 Wm-2), a power conversion efficiency of 1.70% was recorded for polymeric sulfur–selenium–based (SeS2:S:DIB) solidstate solar cells, which is higher than that of polymeric sulfurbased (S:DIB) devices (1.09 %). For perovskite solar cells, a relatively high efficiency has been achieved for polymeric sulfur–selenium-based (SeS2:S:DIB) solar cells (10.21%) and polymeric sulfur-based (S:DIB; 7.32%) solar cells, respectively. The conductivity of the polymeric SeS material has been determined to 2.2410-4 Scm-1, which is higher than for the polymeric sulfur material under the same doping conditions. Photoinduced absorption and steady-state photoluminescence measurements were performed to investigate the charge-transfer properties relevant for the solar cells. The results in the present study qualify the new polymeric sulfur–selenium materials as candidates for low-cost hole-transport materials for photovoltaic devices.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2017.
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-211088DOI: 10.1002/cptc.201700037OAI: oai:DiVA.org:kth-211088DiVA: diva2:1127414
Note

QC 20170714

Available from: 2017-07-14 Created: 2017-07-14 Last updated: 2017-07-14Bibliographically approved
In thesis
1. Novel organic sensitizers and hole transport materials for efficient solid-state photovoltaic devices
Open this publication in new window or tab >>Novel organic sensitizers and hole transport materials for efficient solid-state photovoltaic devices
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

State-of-art solid-state photovoltaic devices, such as solid-state dye sensitized solar cells (ssDSSCs) and perovskite solar cells have attracted significant attention due to their high efficiency and potential low-cost manufacture. However, there are still challenges that limit the application up-scaling..

 

One important factor that limits the efficiency of ssDSSCs is associated with the sensitizers. In this thesis, we have developed several organic sensitizers for highly efficient and stable ssDSSCs. The compatibility between sensitizers and hole transport materials has also been investigated. Novel blue colored sensitizers have been studied with aesthetic applications in mind. By co-sensitization using two complementary sensitizing dyes, the efficiency of ssDSSCs can be increased significantly..

 

For both PSCs and ssDSSCs, the hole transport materials (HTMs) represent one of the crucial factors for efficient charge collection as well as future cost of manufacturing. Here, we have studied organic triphenylamine based oligomers as HTMs for both ssDSSCs and PSCs. The influence of the molecular structure of the HTM building blocks on the photovoltaic performance has been studied in detail. In order to minimizing the cost of fabrication of photovoltaic devices, we have also developed sulfur-based cross-linked polymers as HTMs to replace the well-known, expensive HTM Spiro-OMeTAD. The cross-linked polymeric sulfur material work well in both ssDSSCs and PSCs with efficiencies around 2% and 10%, respectively. These results will provides important insights for the future design of inexpensive and efficient solid state photovoltaic devices.

Abstract [sv]

Nya solceller på forskningsstadiet, såsom fasta färgämnessensiterade solceller (ssDSSC) och perovskitsolceller (PSC), har tilldragit sig stor uppmärksamhet pga hög effektivitet och potentiellt låg tillverkningskostnad. Dessa typer av solceller konfronteras dock med utmaningar vilka förhindrar uppskalning.

 

En viktig begränsande faktor för omvandlingseffektiviteten från ssDDSC kan hänföras till de sensiterande färgämnena. I den här avhandlingen har vi utvecklat flera nya organiska färgämnen för effektiva och stabila ssDSSC. Kompatibiliteten mellan dessa färgämnen och hål-ledande material har också undersökts. Nya blå färgämnen har studerats med särskild avsikt att skapa förutsättningar för estetiskt tilltalande solceller. Genom samtidig sensitering med två olika och kompletterande färgämnen har solceller med högra effektivitet kunnat tillverkas.

 

Hål-transportmaterial (HTM) till både ssDSSC och PSC utgör en viktig parameter för effektiv omvandling liksom en framtida tillverkningskostnad. In detta arbete har vi undersökt organiska, trifenylaminbaserade HTM till både ssDSSC och PSC. Effekter från den molekylära strukturen i de hål-ledande materialens byggstenar  har studerats i detalj. Med sikte på en framtida låg tillverkningskostnad av solceller av dessa typer, så har också korslänkade svavelbaserade HTM tagits fram för att ersätta det välkända och dyra materialet Spiro-OMeTAD. Dessa korslänkade och polymera svavelmaterial ger ssDSSC och PSC med höga omvandlingseffektiviteter, 2% respektive 10%. Resultaten i denna avhandling ger viktiga insikter för utveckling av framtida billiga och samtidigt effektiva fasta solceller.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 71 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2017:4
Keyword
organic sensitizers, ssDSCs, perovskite solar cell, hole transport materials, cross-linked polymeric sulfur
National Category
Physical Chemistry
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-211089 (URN)978-91-7729-454-2 (ISBN)
Public defence
2017-09-12, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20170714

Available from: 2017-07-14 Created: 2017-07-14 Last updated: 2017-07-14Bibliographically approved

Open Access in DiVA

fulltext(945 kB)3 downloads
File information
File name FULLTEXT01.pdfFile size 945 kBChecksum SHA-512
fb47d4735ab789aad85ac83794f6c6e7070d5d1661146a86db71e0431a33fb54628853a2697bf87570ecd0cbf9d6c53638951271bf5064906b37264acdc7636e
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Liu, PengGardner, JamesKloo, Lars
By organisation
Applied Physical Chemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 3 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf