Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calibration in Eye Tracking Using Transfer Learning
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Kalibrering inom Eye Tracking genom överföringsträning (Swedish)
Abstract [en]

This thesis empirically studies transfer learning as a calibration framework for Convolutional Neural Network (CNN) based appearance-based gaze estimation models. A dataset of approximately 1,900,000 eyestripe images distributed over 1682 subjects is used to train and evaluate several gaze estimation models. Each model is initially trained on the training data resulting in generic gaze models. The models are subsequently calibrated for each test subject, using the subject's calibration data, by applying transfer learning through network fine-tuning on the final layers of the network. Transfer learning is observed to reduce the Euclidean distance error of the generic models within the range of 12-21%, which is in line with current state-of-the-art. The best performing calibrated model shows a mean error of 29.53mm and a median error of 22.77mm. However, calibrating heatmap output-based gaze estimation models decreases the performance over the generic models. It is concluded that transfer learning is a viable calibration framework for improving the performance of CNN-based appearance based gaze estimation models.

Abstract [sv]

Detta examensarbete är en empirisk studie på överföringsträning som ramverk för kalibrering av neurala faltningsnätverks (CNN)-baserade bildbaserad blickapproximationsmodeller. En datamängd på omkring 1 900 000 ögonrandsbilder fördelat över 1682 personer används för att träna och bedöma flertalet blickapproximationsmodeller. Varje modell tränas inledningsvis på all träningsdata, vilket resulterar i generiska modeller. Modellerna kalibreras därefter för vardera testperson med testpersonens kalibreringsdata via överföringsträning genom anpassning av de sista lagren av nätverket. Med överföringsträning observeras en minskning av felet mätt som eukilidskt avstånd för de generiska modellerna inom 12-21%, vilket motsvarar de bästa nuvarande modellerna. För den bäst presterande kalibrerade modellen uppmäts medelfelet 29,53mm och medianfelet 22,77mm. Dock leder kalibrering av regionella sannolikhetsbaserade blickapproximationsmodeller till en försämring av prestanda jämfört med de generiska modellerna. Slutsatsen är att överföringsträning är en legitim kalibreringsansats för att förbättra prestanda hos CNN-baserade bildbaserad blickapproximationsmodeller.

Place, publisher, year, edition, pages
2017.
Keywords [en]
Eye Tracking, Deep Learning, Transfer Learning, Convolutional Neural Networks, Supervised Learning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-210815OAI: oai:DiVA.org:kth-210815DiVA, id: diva2:1120301
External cooperation
Tobii
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2017-10-16 Created: 2017-07-06 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(1245 kB)121 downloads
File information
File name FULLTEXT01.pdfFile size 1245 kBChecksum SHA-512
db175d517da2d7c51cf6644031bf8b9bf33278bdb97653825774580e9ce7ee35e344649f327153106283a34bb2e350078c8d00ea3e9661b5be88f8196b9a5c80
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 121 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 783 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf