Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Machine Learning Ensemble Approach to Churn Prediction: Developing and Comparing Local Explanation Models on Top of a Black-Box Classifier
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Maskininlärningsensembler som verktyg för prediktering av utträde : En studie i att beräkna och jämföra lokala förklaringsmodeller ovanpå svårförståeliga klassificerare (Swedish)
Abstract [en]

Churn prediction methods are widely used in Customer Relationship Management and have proven to be valuable for retaining customers. To obtain a high predictive performance, recent studies rely on increasingly complex machine learning methods, such as ensemble or hybrid models. However, the more complex a model is, the more difficult it becomes to understand how decisions are actually made. Previous studies on machine learning interpretability have used a global perspective for understanding black-box models. This study explores the use of local explanation models for explaining the individual predictions of a Random Forest ensemble model. The churn prediction was studied on the users of Tink – a finance app.

This thesis aims to take local explanations one step further by making comparisons between churn indicators of different user groups. Three sets of groups were created based on differences in three user features. The importance scores of all globally found churn indicators were then computed for each group with the help of local explanation models. The results showed that the groups did not have any significant differences regarding the globally most important churn indicators. Instead, differences were found for globally less important churn indicators, concerning the type of information that users stored in the app.

In addition to comparing churn indicators between user groups, the result of this study was a well-performing Random Forest ensemble model with the ability of explaining the reason behind churn predictions for individual users. The model proved to be significantly better than a number of simpler models, with an average AUC of 0.93.

Abstract [sv]

Metoder för att prediktera utträde är vanliga inom Customer Relationship Management och har visat sig vara värdefulla när det kommer till att behålla kunder. För att kunna prediktera utträde med så hög säkerhet som möjligt har den senasteforskningen fokuserat på alltmer komplexa maskininlärningsmodeller, såsom ensembler och hybridmodeller. En konsekvens av att ha alltmer komplexa modellerär dock att det blir svårare och svårare att förstå hur en viss modell har kommitfram till ett visst beslut. Tidigare studier inom maskininlärningsinterpretering har haft ett globalt perspektiv för att förklara svårförståeliga modeller. Denna studieutforskar lokala förklaringsmodeller för att förklara individuella beslut av en ensemblemodell känd som 'Random Forest'. Prediktionen av utträde studeras påanvändarna av Tink – en finansapp.

Syftet med denna studie är att ta lokala förklaringsmodeller ett steg längre genomatt göra jämförelser av indikatorer för utträde mellan olika användargrupper. Totalt undersöktes tre par av grupper som påvisade skillnader i tre olika variabler. Sedan användes lokala förklaringsmodeller till att beräkna hur viktiga alla globaltfunna indikatorer för utträde var för respektive grupp. Resultaten visade att detinte fanns några signifikanta skillnader mellan grupperna gällande huvudindikatorerna för utträde. Istället visade resultaten skillnader i mindre viktiga indikatorer som hade att göra med den typ av information som lagras av användarna i appen.

Förutom att undersöka skillnader i indikatorer för utträde resulterade dennastudie i en välfungerande modell för att prediktera utträde med förmågan attförklara individuella beslut. Random Forest-modellen visade sig vara signifikantbättre än ett antal enklare modeller, med ett AUC-värde på 0.93.

Place, publisher, year, edition, pages
2017. , p. 67
Keywords [en]
Machine learning, Ensemble, Random forest, Churn prediction, LIME, Interpretability, CRM, Local explanations
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-210565OAI: oai:DiVA.org:kth-210565DiVA, id: diva2:1118767
External cooperation
Tink
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2017-10-16 Created: 2017-07-02 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(2602 kB)149 downloads
File information
File name FULLTEXT01.pdfFile size 2602 kBChecksum SHA-512
094cd0cfd36379c94ce289e06acde81b8d6955260709f1ad3900f6e2841ba68851efbe9f9f4e85021ec6eac1bc0cafb21560b787eff07120e0b38830c84afb89
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 149 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 445 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf