Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Study on factors affecting first-day returns of an IPO
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2017 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
En studie av faktorer som påverkar första dagens avkastning vid en börsintroduktion (Swedish)
Abstract [en]

This thesis studies factors that could affect first-day returns of an IPO on the Swedish stock market. The number of Swedish IPOs has increased over the past years and are often under-priced. By looking at factors previously studied as well as some new factors an attempt is made at explaining this phenomenon. The results show that tech companies have higher first-day returns that other companies based on the ICB standard. Moreover, return of the sector index, age of company and part of the year the IPO is made influences first-day returns. Considering the small dataset and some model violations no generalizations can be made. This thesis does not provide true answers but instead gives directions of where to look for them.

Abstract [sv]

Denna uppsats studerar faktorer som kan tänkas påverka förstadagsavkastning från en IPO på den svenska börsmarknaden. Antalet svenska IPO: er har ökat avsevärt de senaste åren och ofta är de även underprissatta. Genom att titta på faktorer från tidigare studier men också studera nya tänkbara faktorer försöker underprissättningen förklaras. Resultaten visar att teknikbolag har högre förstadagsavkastning jämfört med typer av bolag, baserad på ICB-klassificeringen. Förutom detta så påverkar även avkastning från sektorindex, bolagets ålder samt vilken del av året som bolaget noteras. Med tanke på den föga mängden data kan inga generaliseringar göras. Denna studie ger inga klara svar utan visar snarare vart man bör leta för att finna dem.

Place, publisher, year, edition, pages
2017.
Series
TRITA-MAT-K ; 2017:07
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-210168OAI: oai:DiVA.org:kth-210168DiVA, id: diva2:1117098
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2017-06-28 Created: 2017-06-28 Last updated: 2017-06-28Bibliographically approved

Open Access in DiVA

fulltext(812 kB)345 downloads
File information
File name FULLTEXT01.pdfFile size 812 kBChecksum SHA-512
ca13ce08178e081f8ed271b7851b7b32aea3e001b606eac3b8ce9e079679ea25bf6ee6b3d1d49764b70e8e61c9db9e9ee7940c8fc7deb08887b0c9b4c3702ca8
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 345 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 918 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf