Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Oövervakad maskininlärning för att upptäcka bottar i online-tävlingar
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2016 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [sv]

Digital marknadsföring är i dagsläget en snabbt växande bransch och aktörer söker ständigt efter nya sätt att bedriva marknadsföring. I denna rapport studeras en av dessa aktörer, Adoveo, vars värdeerbjudande är att inkludera ett tävlingsmoment i reklamkampanjerna som ger deltagare möjlighet att vinna priser. Problematiskt är dock att priserna riskeras att inte delas ut till mänskliga deltagare, utan istället delas ut till bottar som deltar i tävlingarna både omänskligt många gånger och med omänskligt bra resultat.

Syftet med rapporten är att med hjälp av data från denna aktör försöka skilja mänskliga deltagare från bottar. För detta tillämpades två oövervakade maskininlärningsalgoritmer för att klustra datapunkterna, Gaussian Mixture Model och K-medelvärde. Resultatet var en otydlig klusterstruktur där det inte gick att pålitligt identifiera något kluster som mänskligt respektive botliknande. Orsakerna bakom denna osäkerhet var främst designen av reklamtävlingarna samt att attributen i den studerade datan var otillräckliga. Rekommendationer gavs till hur dessa problem skulle kunna åtgärdas.

Slutligen genomfördes en analys avseende affärsnyttan med botsäkra tävlingar och vilket mervärde det skapar för företaget. Analysen visade att affärsnyttan från att botsäkra tävlingarna skulle vara stor, då det skulle ge fördelar gentemot konsumenter såväl som annonsörer och konkurrenter.

Abstract [en]

Digital marketing is a fast-growing market and its actors are constantlylooking for innovative and new ways of marketing. In this paper, an actoron this market called Adoveo will be studied. Their specialization and valueproposition is to include a competition part in their advertisement campaigns,giving its participators the possibility to win a prize. What could turn out to beproblematic is that the prizes are not rewarded to human contestants, insteadgoing to a bot that can participate in the competition with unreasonably goodresults.

The purpose of this paper is to try to separate bots from human contestantswith the data provided from Adoveo. To that end, two unsupervised machinelearning algorithms were implemented to cluster the data points, GaussianMixture Model and K-Means. The result was an uninterpretable cluster structurefrom which there was no reliable identification of bot-like and human-likebehaviour to be made. The reason behind this was twofold, the design of thecompetition and a lack of decisive attributes in the data. Recommendationswere provided to how both of these issues could be rectified.Finally, an analysis was provided on the business value of bot-securingcompetitions and the value it gives to the company. The analysis showed thatthe business value of bot-securing competitions would be beneficial, becauseit would give a competitive advantage against competitors and also improvebusiness with advertisers and consumers.

Place, publisher, year, edition, pages
2016. , p. 32
Keyword [en]
Unsupervised machine learning, clustering, GMM, digital marketing, machine learning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-209821OAI: oai:DiVA.org:kth-209821DiVA, id: diva2:1114740
External cooperation
Adoveo
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
Available from: 2017-10-13 Created: 2017-06-25 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(1287 kB)41 downloads
File information
File name FULLTEXT03.pdfFile size 1287 kBChecksum SHA-512
34b228d5358079bb8d26892637d9c78fa8855878f66356fe73c0615a4270040717c9b6c30980a19865d7784b4efa9458fdbf85f410526808c1c2b2716e1b4760
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 41 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 196 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf