Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparative Analysis of Weighted Pathfinding in Realistic Environments
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesisAlternative title
Komparativ Analys of Viktad Pathfinding i Realistiska Miljöer (Swedish)
Abstract [en]

The general subject of this thesis concerns different weightings applied to Dijkstra’s pathfinding algorithm to balance performance versus accuracy in a simulated realistic environment. The algorithms used in this study are Dijkstra's pathfinding algorithm and A*. When evaluating paths in the opposite direction of the goal the path length is multiplied by a heuristic coefficient. Thus giving preference to the path in the general direction of the goal. The results derived from this testing show that for each usage case that does not disregard either path length or computation time there is a heuristic coefficient for which the pathfinding calculations will require the least amount of computation power in relation to the accuracy of the resulting paths.

Abstract [sv]

Denna avhandling avser påvisa hur olika viktningar applicerad på Dijkstras Pathfindingalgoritm balanserar prestanta och precision i en simulerad realistisk miljö. Algortimerna som används är Dijkstras och A*. När vägar i motsatt riktning mot målet övervägs multipliceras dessa med en heuristisk koefficient. Därmed premieras vägar som generellt går rakt mot målet. De härledda resultaten påvisar att för varje användningsfall som inte ignorerar varken prestanta eller precision finns det en heuristisk viktningskoefficient där minsta möjliga mängd prestanta relativt precision krävs.

Place, publisher, year, edition, pages
2017.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-209253OAI: oai:DiVA.org:kth-209253DiVA: diva2:1111201
Supervisors
Examiners
Available from: 2017-06-18 Created: 2017-06-18 Last updated: 2017-06-18Bibliographically approved

Open Access in DiVA

fulltext(7890 kB)24 downloads
File information
File name FULLTEXT01.pdfFile size 7890 kBChecksum SHA-512
ee310f650be8b15ee90c418ca5b931a05659ad3e89927c7f671e5a72a93d70ac2da97d657b40853ea1a4d48001e2ed70ecb7ac861c03f39d5b7793783eaff7c2
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf