Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Schemaläggning med hjälp av maskininlärning
KTH, School of Technology and Health (STH), Medical Engineering, Computer and Electronic Engineering.
KTH, School of Technology and Health (STH), Medical Engineering, Computer and Electronic Engineering.
2017 (Swedish)Independent thesis Basic level (Higher Education Diploma (Fine Arts)), 10 credits / 15 HE creditsStudent thesisAlternative title
Scheduling with the assistance of Machine learning (English)
Abstract [sv]

Detta arbete har utvärderat om maskininlärning kan tillföra nytta vid schemaplanering.Utvärderingen baserades på tester där prototyper använde arbetskalendrar föratt träna och mäta sin prediktiva förmåga. Kalendrarna tillhandahölls från två service-och installationsbolag i Stockholmsområdet. Genom att testa vilka utförandetiderprototyperna krävde utvärderades om tillämpningen skulle vara praktiskt användbarpå arbetsverktyg som exempelvis smartphones.Totalt utvecklades tre prototyper som gjordes prediktiva med hjälp av algoritmernaDensity-based Spatial Clustering of Applications with Noise (DBSCAN), LogisticRegression och Weighted K-Nearest Neighbors (wKNN). Resultatet visade attDBSCAN var den algoritm som sammantaget presterade bäst. Dock kunde inte enslutsats dras om maskininlärning skulle vara användbart. Andelen lyckade prediktioneröverskred inte andelen tillgängliga tider på de berörda dagarna som testernautfördes, vilket antogs vara ett otillfredsställande resultat. Datahanteringen krävdeen betydande mängd resurser, vilket skulle kunna vara ett problem vid praktisk tilllämpning.

Abstract [en]

This study has been analyzing if machine learning could be useful to work-relatedscheduling. The analysis was based on predictions generated by prototypes usingbusiness calendars. The business calendars were collected from two service and installationcompanies in the Stockholm region. An analysis was conducted regardingif the application could be practically applied to devices such as a smartphone. Theanalysis was based on tests regarding the prototypes required time to perform theirtasks.Three prototypes were developed with algorithms that made them predictive. Density-based Spatial Clustering of Applications with Noise (DBSCAN), Logistic Regressionand Weighted K-Nearest Neighbors (wKNN) were the implemented algorithms.DBSCAN was the best-performing algorithm according to the tests. However, a conclusioncould not be found concerning whether machine learning could be useful.The number of successful predictions did not exceed the number of available timeson concerned days, which was assumed as unsatisfying results. In addition, the prototypesneeded a significant amount of resources which could be a problem in practicaluse.

Place, publisher, year, edition, pages
2017. , 74 p.
Series
TRITA-STH, 2017:42
Keyword [en]
Machine learning, scheduling, work-calendars, predictions
Keyword [sv]
Maskininlärning, schemaplanering, arbetskalendrar, prediktering
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-208936OAI: oai:DiVA.org:kth-208936DiVA: diva2:1109024
External cooperation
A Great Thing AB
Subject / course
Computer Science
Educational program
Bachelor of Science in Engineering - Electrical Engineering
Supervisors
Examiners
Available from: 2017-06-16 Created: 2017-06-13 Last updated: 2017-06-16Bibliographically approved

Open Access in DiVA

Rapport(1620 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 1620 kBChecksum SHA-512
de1620967aa184287d0d2f5343c825d52474dad1720d0ea7088bffc68daa44e7058ba7654818de5fa093a3c2c49799d3337631ca4f47c5afb333a0cdc68343dc
Type fulltextMimetype application/pdf

By organisation
Computer and Electronic Engineering
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf