Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On-Line Market Microstructure Prediction Using Hidden Markov Models
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematical Statistics.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Sekventiell mikrostrukturprediktering med dolda Markovmodeller (Swedish)
Abstract [en]

Over the last decades, financial markets have undergone dramatic changes. With the advent of the arbitrage pricing theory, along with new technology, markets have become more efficient. In particular, the new high-frequency markets, with algorithmic trading operating on micro-second level, make it possible to translate ”information” into price almost instantaneously. Such phenomena are studied in the field of market microstructure theory, which aims to explain and predict them.

In this thesis, we model the dynamics of high frequency markets using non-linear hidden Markov models (HMMs). Such models feature an intuitive separation between observations and dynamics, and are therefore highly convenient tools in financial settings, where they allow a precise application of domain knowledge. HMMs can be formulated based on only a few parameters, yet their inherently dynamic nature can be used to capture well-known intra-day seasonality effects that many other models fail to explain.

Due to recent breakthroughs in Monte Carlo methods, HMMs can now be efficiently estimated in real-time. In this thesis, we develop a holistic framework for performing both real-time inference and learning of HMMs, by combining several particle-based methods. Within this framework, we also provide methods for making accurate predictions from the model, as well as methods for assessing the model itself.

In this framework, a sequential Monte Carlo bootstrap filter is adopted to make on-line inference and predictions. Coupled with a backward smoothing filter, this provides a forward filtering/backward smoothing scheme. This is then used in the sequential Monte Carlo expectation-maximization algorithm for finding the optimal hyper-parameters for the model.

To design an HMM specifically for capturing information translation, we adopt the observable volume imbalance into a dynamic setting. Volume imbalance has previously been used in market microstructure theory to study, for example, price impact. Through careful selection of key model assumptions, we define a slightly modified observable as a process that we call scaled volume imbalance. The outcomes of this process retain the key features of volume imbalance (that is, its relationship to price impact and information), and allows an efficient evaluation of the framework, while providing a promising platform for future studies. This is demonstrated through a test on actual financial trading data, where we obtain high-performance predictions. Our results demonstrate that the proposed framework can successfully be applied to the field of market microstructure.

Abstract [sv]

Under de senaste decennierna har det gjorts stora framsteg inom finansiell teori för kapitalmarknader. Formuleringen av arbitrageteori medförde möjligheten att konsekvent kunna prissätta finansiella instrument. Men i en tid då högfrekvenshandel numera är standard, har omsättningen av information i pris börjat ske i allt snabbare takt. För att studera dessa fenomen; prispåverkan och informationsomsättning, har mikrostrukturteorin vuxit fram.

I den här uppsatsen studerar vi mikrostruktur med hjälp av en dynamisk modell. Historiskt sett har mikrostrukturteorin fokuserat på statiska modeller men med hjälp av icke-linjära dolda Markovmodeller (HMM:er) utökar vi detta till den dynamiska domänen.

HMM:er kommer med en naturlig uppdelning mellan observation och dynamik, och är utformade på ett sådant sätt att vi kan dra nytta av domänspecifik kunskap. Genom att formulera lämpliga nyckelantaganden baserade på traditionell mikrostrukturteori specificerar vi en modell—med endast ett fåtal parametrar—som klarar av att beskriva de välkända säsongsbeteenden som statiska modeller inte klarar av.

Tack vare nya genombrott inom Monte Carlo-metoder finns det nu kraftfulla verktyg att tillgå för att utföra optimal filtrering med HMM:er i realtid. Vi applicerar ett så kallat bootstrap filter för att sekventiellt filtrera fram tillståndet för modellen och prediktera framtida tillstånd. Tillsammans med tekniken backward smoothing estimerar vi den posteriora simultana fördelningen för varje handelsdag. Denna används sedan för statistisk inlärning av våra hyperparametrar via en sekventiell Monte Carlo Expectation Maximization-algoritm.

För att formulera en modell som beskriver omsättningen av information, väljer vi att utgå ifrån volume imbalance, som ofta används för att studera prispåverkan. Vi definierar den relaterade observerbara storheten scaled volume imbalance som syftar till att bibehålla kopplingen till prispåverkan men även går att modellera med en dynamisk process som passar in i ramverket för HMM:er. Vi visar även hur man inom detta ramverk kan utvärdera HMM:er i allmänhet, samt genomför denna analys för vår modell i synnerhet. Modellen testas mot finansiell handelsdata för både terminskontrakt och aktier och visar i bägge fall god predikteringsförmåga.

Place, publisher, year, edition, pages
2017.
Series
TRITA-MAT-E, 2017:29
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-208312OAI: oai:DiVA.org:kth-208312DiVA: diva2:1107428
External cooperation
Scila AB
Subject / course
Mathematical Statistics
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2017-06-09 Created: 2017-06-09 Last updated: 2017-06-09Bibliographically approved

Open Access in DiVA

fulltext(1312 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 1312 kBChecksum SHA-512
642c456d606e8a3f79c3fe862fb1732509ab38a43e1f169bdccfd33c3d04c3ffac0a612638ac57800be5cd33304337db0e619c5ed7944efc60f69c5468cb3ef0
Type fulltextMimetype application/pdf

By organisation
Mathematical Statistics
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 35 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 128 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf