Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparison of Thermal Stress during Short-Circuit in Different Types of 1.2 kV SiC Transistors Based on Experiments and Simulations
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
KTH, School of Electrical Engineering (EES), Electric Power and Energy Systems.
RISE Acreo, Sweden.
Show others and affiliations
2016 (English)In: Silicon Carbide and Related Materials 2016 / [ed] Konstantinos Zekentes, Konstantin V. Vasilevskiy and Nikolaos Frangis, 2016, Vol. 897, 595-598 p.Conference paper, Published paper (Refereed)
Abstract [en]

The temperature evolution during a short-circuit in the die of three different Silicon Carbide1200-V power devices is presented. A transient thermal simulation was performed based on the reconstructedstructure of commercially available devices. The location of the hottest point in the device iscompared. Finally, the analysis supports the necessity to turn off short-circuit events rapidly in orderto protect the device after a fault.

Place, publisher, year, edition, pages
2016. Vol. 897, 595-598 p.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-207757DOI: 10.4028/www.scientific.net/MSF.897.595OAI: oai:DiVA.org:kth-207757DiVA: diva2:1097947
Conference
ECSCRM 2016
Note

QC 20170530

Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-05-29Bibliographically approved
In thesis
1. On Reliability of SiC Power Devices in Power Electronics
Open this publication in new window or tab >>On Reliability of SiC Power Devices in Power Electronics
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Silicon Carbide (SiC) is a wide-bandgap (WBG) semiconductor materialwhich has several advantages such as higher maximum electric field, lowerON-state resistance, higher switching speeds, and higher maximum allowablejunction operation temperature compared to Silicon (Si). In the 1.2 kV - 1.7kV voltage range, power devices in SiC are foreseen to replace Si Insulatedgatebipolar transistors (IGBTs) for applications targeting high efficiency,high operation temperatures and/or volume reductions. In particular, theSiC Metal-oxide semiconductor field-effect transistor (MOSFET) – which isvoltage controlled and normally-OFF – is the device of choice due to the easeof its implementation in designs using Si IGBTs.In this work the reliability of SiC devices, in particular that of the SiCMOSFET, has been investigated. First, the possibility of paralleling two discreteSiC MOSFETs is investigated and validated through static and dynamictests. Parallel-connection was found to be unproblematic. Secondly, drifts ofthe threshold voltage and forward voltage of the body diode of the SiC MOSFETare investigated through long-term tests. Also these reliability aspectswere found to be unproblematic. Thirdly, the impact of the package on thechip reliability is discussed through a modeling of the parasitic inductancesof a standard module and the impact of those inductances on the gate oxide.The model shows imbalances in stray inductances and parasitic elementsthat are problematic for high-speed switching. A long-term test on the impactof humidity on junction terminations of SiC MOSFETs dies and SiCSchottky dies encapsulated in the same standard package reveals early degradationfor some modules situated outdoors. Then, the short-circuit behaviorof three different types (bipolar junction transistor, junction field-effect transistor,and MOSFET) of 1.2 kV SiC switching devices is investigated throughexperiments and simulations. The necessity to turn OFF the device quicklyduring a fault is supported with a detailed electro-thermal analysis for eachdevice. Design guidelines towards a rugged and fast short-circuit protectionare derived. For each device, a short-circuit protection driver was designed,built and validated experimentally. The possibility of designing diode-lessconverters with SiC MOSFETs is investigated with focus on surge currenttests through the body diode. The discovered fault mechanism is the triggeringof the npn parasitic bipolar transistor. Finally, a life-cycle cost analysis(LCCA) has been performed revealing that the introduction of SiC MOSFETsin already existing IGBT designs is economically interesting. In fact,the initial investment is saved later on due to a higher efficiency. Moreover,the reliability is improved, which is beneficial from a risk-management pointof-view. The total investment over 20 years is approximately 30 % lower fora converter with SiC MOSFETs although the initial converter cost is 30 %higher.

Abstract [sv]

Kiselkarbid (SiC) är ett bredbandgapsmaterial (WBG) som har flera fördelar,såsom högre maximal elektrisk fältstyrka, lägre ON-state resitans, högreswitch-hastighet och högre maximalt tillåten arbetstemperatur jämförtmed kisel (Si). I spänningsområdet 1,2-1,7 kV förutses att effekthalvledarkomponenteri SiC kommer att ersätta Si Insulated-gate bipolar transistorer(IGBT:er) i tillämpningar där hög verkningsgrad, hög arbetstemperatur ellervolymreduktioner eftersträvas. Förstahandsvalet är en SiC Metal-oxidesemiconductor field-effect transistor (MOSFET) som är spänningsstyrd ochnormally-OFF, egenskaper som möjliggör enkel implementering i konstruktionersom använder Si IGBTer.I detta arbete undersöks tillförlitligheten av SiC komponenter, specielltSiC MOSFET:en. Först undersöks möjligheten att parallellkoppla tvådiskretaSiC MOSFET:ar genom statiska och dynamiska prov. Parallellkopplingbefanns vara oproblematisk. Sedan undersöks drift av tröskelspänning ochbody-diodens framspänning genom långtidsprov. Ocksådessa tillförlitlighetsaspekterbefanns vara oproblematiska. Därefter undersöks kapslingens inverkanpåchip:et genom modellering av parasitiska induktanser hos en standardmoduloch inverkan av dessa induktanser pågate-oxiden. Modellen påvisaren obalans mellan de parasitiska induktanserna, något som kan varaproblematiskt för snabb switchning. Ett långtidstest av inverkan från fuktpåkant-termineringar för SiC-MOSFET:ar och SiC-Schottky-dioder i sammastandardmodul avslöjar tidiga tecken pådegradering för vissa moduler somvarit utomhus. Därefter undersöks kortslutningsbeteende för tre typer (bipolärtransistor,junction-field-effect transistor och MOSFET) av 1.2 kV effekthalvledarswitchargenom experiment och simuleringar. Behovet att stänga avkomponenten snabbt stöds av detaljerade elektrotermiska simuleringar för allatre komponenter. Konstruktionsriktlinjer för ett robust och snabbt kortslutningsskyddtas fram. För var och en av komponenterna byggs en drivkrets medkortslutningsskydd som valideras experimentellt. Möjligheten att konstrueradiodlösa omvandlare med SiC MOSFET:ar undersöks med fokus påstötströmmargenom body-dioden. Den upptäckta felmekanismen är ett oönskat tillslagav den parasitiska npn-transistorn. Slutligen utförs en livscykelanalys(LCCA) som avslöjar att introduktionen av SiC MOSFET:ar i existerandeIGBT-konstruktioner är ekonomiskt intressant. Den initiala investeringensparas in senare pågrund av en högre verkningsgrad. Dessutom förbättrastillförlitligheten, vilket är fördelaktigt ur ett riskhanteringsperspektiv. Dentotala investeringen över 20 år är ungefär 30 % lägre för en omvandlare medSiC MOSFET:ar även om initialkostnaden är 30 % högre.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 215 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2017:038
Keyword
Silicon Carbide, Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), Junction Field-Effect Transistor(JFET), Bipolar Junction Transistor (BJT), Reliability, Failure Analysis, Reliability Testing, Short- Circuit Currents, Humidity, Resonant converter, Series-resonant converter (SLR), Base drive circuits, Gate drive circuits, Life-Cycle Cost Analysis (LCCA), Kiselkarbid, MOSFETar, JFETar, Bipolär Junction Transistor (BJT), Tillförlitlighet, Robusthet, Felanalys, Tillförlitlighetstestning, Kortslutningsströmmar, Luftfuktighet, Resonansomvandlare, Serie-resonansomvandlare (SLR), Basdrivkretsar, Gate-drivkretsar, Felskydd, Livscykelkostnadsanalys
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-207763 (URN)978-91-7729-445-0 (ISBN)
Public defence
2017-06-15, Kollegiesalen, Brinellvägen 8, KTH-huset, våningsplan 4, KTH Campus, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20170524

Available from: 2017-05-24 Created: 2017-05-23 Last updated: 2017-05-24Bibliographically approved

Open Access in DiVA

fulltext(5189 kB)17 downloads
File information
File name FULLTEXT01.pdfFile size 5189 kBChecksum SHA-512
2c5340b52576be0f674abfa523233a9654ef9fb2f8a3ca470c0a2e7d49c64e62349bdb9811effbb409facbbd20c879f2b5abd15e6a739b558386563a295d851a
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Sadik, Diane-PerleColmenares, JuanNee, Hans-Peter
By organisation
Electric Power and Energy Systems
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 17 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf