Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance Analysis of Nanoelectromechanical Relay-Based Field-Programmable Gate Arrays
Department of Electrical and Electronic Engineering, University of Bristol.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-4867-0391
Department of Electrical and Electronic Engineering, University of Bristol.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-0525-8647
Show others and affiliations
2018 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 6, p. 15997-16009Article in journal (Refereed) Published
Abstract [en]

The energy consumption of field-programmable gate arrays (FPGA) is dominated by leakage currents and dynamic energy associated with programmable interconnect. An FPGA built entirely from nanoelectromechanical (NEM) relays can effectively eliminate leakage energy losses, reduce the interconnect dynamic energy, operate at temperatures >225 °C and tolerate radiation doses in excess of 100 Mrad, while hybrid FPGAs comprising both complementary metal-oxide-semiconductor (CMOS) transistors and NEM relays (NEM-CMOS) have the potential to realize improvements in performance and energy efficiency. Large-scale integration of NEM relays, however, poses a significant engineering challenge due to the presence of moving parts. We discuss the design of FPGAs utilizing NEM relays based on a heterogeneous 3-D integration scheme, and carry out a scaling study to quantify key metrics related to performance and energy efficiency in both NEM-only and NEM-CMOS FPGAs. We show how the integration scheme has a profound effect on these metrics by changing the length of global wires. The scaling regime beyond which net performance and energy benefits is seen in NEM-CMOS over a baseline 90 nm CMOS technology is defined by an effective relay beam length of 0.5 μm , on-resistance of 200 kΩ , and a via pitch of 0.4 μm , all achievable with existing process technology. For ultra-low energy applications that are not performance critical, NEM-only FPGAs can provide close to 15× improvement in energy efficiency.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2018. Vol. 6, p. 15997-16009
Keywords [en]
NEM Logic, 3D integration, low-power electronics, Nanoelectromechanical, microelectromechanical, relay, non-volatile, 3-terminal, 4-terminal, nano switch, MEMS, NEMS, FPGA, energy efficiency, high-temperature, radiation-hard, integration, back-end-of-line, CMOS
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-207184DOI: 10.1109/ACCESS.2018.2816781ISI: 000430105200001Scopus ID: 2-s2.0-85044019035OAI: oai:DiVA.org:kth-207184DiVA, id: diva2:1096714
Funder
EU, European Research Council, 277879, 680884
Note

QC 20180412

Available from: 2017-05-18 Created: 2017-05-18 Last updated: 2018-06-04Bibliographically approved
In thesis
1. Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
Open this publication in new window or tab >>Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world.

Abstract [sv]

Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. p. 55
Series
TRITA-EE, ISSN 1653-5146 ; 2017:048
Keywords
Nano-electromechanical systems (NEMS), Micro-electromechanical systems (MEMS), heterogeneous 3D integration, CMOS integration, Morethan- Moore (MtM), adhesive wafer bonding, NEM switch, FPGA, contact reliability, hermetic vacuum packaging, Cu low-temperature welding, through silicon vias (TSVs), magnetic self-assembly
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-207185 (URN)978-91-7729-431-3 (ISBN)
Public defence
2017-06-15, Q2, Osquldas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

20170519

Available from: 2017-05-19 Created: 2017-05-18 Last updated: 2017-05-19Bibliographically approved

Open Access in DiVA

fulltext(13606 kB)47 downloads
File information
File name FULLTEXT01.pdfFile size 13606 kBChecksum SHA-512
df2259d7c8dbee56fbc7cf43313387d2f8c28f69978579e0670d96fb806d97a6a18924353b10c87714407fad7577c7e0e7e72bd2c4bbe20eeb433ae97b445fef
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopushttp://ieeexplore.ieee.org/document/8318576/

Search in DiVA

By author/editor
Bleiker, Simon J.Niklaus, FrankPamunuwa, Dinesh
By organisation
Micro and Nanosystems
In the same journal
IEEE Access
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 47 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 291 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf