Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Matching precursor kinetics to afford a more robust CVD chemistry: a case study of the C chemistry for silicon carbide using SiF4 as Si precursor
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-8116-9980
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-9455-9558
Linköping University, Department of Physics, Chemistry and Biology, Semiconductor Materials. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6175-1815
Show others and affiliations
2017 (English)In: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 5, p. 5818-5823Article in journal (Refereed) Published
Abstract [en]

Chemical Vapor Deposition (CVD) is one of the technology platforms forming the backbone of the semiconductor industry and is vital in the production of electronic devices. To upscale a CVD process from the lab to the fab, large area uniformity and high run-to-run reproducibility are needed. We show by a combination of experiments and gas phase kinetics modeling that the combinations of Si and C precursors with the most well-matched gas phase chemistry kinetics gives the largest area of of homoepitaxial growth of SiC. Comparing CH4, C2H4 and C3H8 as carbon precursors to the SiF4 silicon precursor, CH4 with the slowest kinetics renders the most robust CVD chemistry with large area epitaxial growth and low temperature sensitivity. We further show by quantum chemical modeling how the surface chemistry is impeded by the presence of F in the system which limits the amount of available surface sites for the C to adsorb.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017. Vol. 5, p. 5818-5823
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-137446DOI: 10.1039/c7tc00138jISI: 000403571200024OAI: oai:DiVA.org:liu-137446DiVA, id: diva2:1095799
Note

Funding agencies: Knut & Alice Wallenberg Foundation (KAW) project Isotopic Control for Ultimate Material Properties; Swedish Foundation for Strategic Research project SiC - the Material for Energy-Saving Power Electronics [EM11-0034]; Swedish Government Strategic Research

Available from: 2017-05-16 Created: 2017-05-16 Last updated: 2018-10-08Bibliographically approved

Open Access in DiVA

fulltext(2680 kB)23 downloads
File information
File name FULLTEXT02.pdfFile size 2680 kBChecksum
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Stenberg, PontusDanielsson, ÖrjanErdtman, EdvinSukkaew, PitsiriOjamäe, LarsJanzén, ErikPedersen, Henrik
By organisation
Semiconductor MaterialsFaculty of Science & EngineeringChemistry
In the same journal
Journal of Materials Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 71 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 283 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf