Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Influence of Xylan on Precipitation and Filtration Properties of Lignin: A Study in the Context of the LignoBoost Process
KTH, School of Chemical Science and Engineering (CHE).
KTH, School of Chemical Science and Engineering (CHE).
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Inverkan av xylan på utfällning och filtrering av sulfatlignin (Swedish)
Abstract [en]

The LignoBoost process is a valuable supplement to the Kraft process. It can increase the pulp production rate of a Kraft mill and it enables lignin separation from black liquor with a high degree of purity. However, residual xylan in black liquor has been observed to increase filtration resistance of lignin during the LignoBoost process. In order to uncover underlying mechanisms, this thesis investigates the potential influence of xylan during lignin precipitation and filtration, which are the two main steps of the LignoBoost process. For this purpose experiments based on a model system were designed. Model liquors consisted of lignin and xylan as the only organic compounds and contained lower salt concentrations (4.2-5.9 wt%) compared to black liquor. Furthermore, reference liquors were prepared without xylan addition.

Precipitation mechanisms were studied in the onset precipitation region (i.e. alkaline regime) by in-situ focused beam reflectance measurements (FBRM) during step-by-step acidic precipitation of the model liquor. It was found that the onset precipitation pH does not change with the presence of xylan as all liquors started precipitation around pH 9.15.

The filtration process was investigated on model liquors that had been precipitated by fast acidification to acidic regimes (pH 6.5-2.87). The use of FBRM during acid precipitation of model liquors suggested that temperature had a significant influence on the chord length distribution (CLD) of the particles. In all filtration experiments, a decrease in CLD was observed when the temperature was changed from 80 °C to 25 °C. Moreover, this thermal instability of particles seemed to be higher when added xylan was present in the liquor. The investigation of the resulting filer cakes with HPLC showed that xylan was evenly distributed through the cake.

Further findings on the influence of xylan were impeded due to variations in ionic strength in the model liquors. It was found that the effect of ionic strength on filtration properties and particle sizes overshadows the effect of xylan. Higher ionic strength was observed to yield a lower filtration resistance, a higher solidosty, larger particles and lower solid surface area, as investigated by filtration measurements, laser diffraction and BET analysis. Finally, xylan was fluorescently tagged (i.e. dyed) with Remazol Brilliant Blue R to investigate xylan position in the ligninxylan filer cake, using a confocal fluorescence microscope. However, due to the autofluorescence of lignin as well as low emission intensity of the synthesized dyed xylan, xylan could not been tracked within the lignin particle. Nevertheless, valuable insight was gained into the preparation of dyed xylan and the bond stability.

Place, publisher, year, edition, pages
2016.
Keywords [en]
Xylan, Lignin, Precipitation, FBRM, LignoBoost process
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-207054OAI: oai:DiVA.org:kth-207054DiVA, id: diva2:1095506
External cooperation
Chalmers
Available from: 2017-05-15 Created: 2017-05-15 Last updated: 2017-05-15Bibliographically approved

Open Access in DiVA

fulltext(4388 kB)90 downloads
File information
File name FULLTEXT01.pdfFile size 4388 kBChecksum SHA-512
9e3cad53dc0ce3fa5da67ce75970d9d19d4a6b284a7c438de6d4246fd2f6a5a4d093c880add79acdbcc467fd13353c0bedd7ec3b1aeb8fb640c44c5c65d76590
Type fulltextMimetype application/pdf

By organisation
School of Chemical Science and Engineering (CHE)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 90 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 159 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf