Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
KTH, School of Information and Communication Technology (ICT), Integrated Devices and Circuits. (Integrated Circuits and Systems)ORCID iD: 0000-0002-2684-0724
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces.

Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency.

The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. 

Abstract [sv]

Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. , 84 p.
Keyword [en]
Energy harvesting interface, thermoelectric generator, glucose biofuel cell, power management, dc-dc converter, boost converter, zero-current switching, zero-voltage switching, implantable biosensor
Keyword [sv]
Energiskördsgränssnitt, termoelektrisk generator, glukosbiobränslecell, energihantering, DC-DC-omvandlare, boost-omvandlare, inplanterbar biosensor
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
URN: urn:nbn:se:kth:diva-206588ISBN: 978-91-7729-370-5 (print)OAI: oai:DiVA.org:kth-206588DiVA: diva2:1093421
Public defence
2017-06-09, Ka-Sal B (Sal Peter Weissglas), Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-08 Created: 2017-05-05 Last updated: 2017-05-09Bibliographically approved
List of papers
1. An Efficient Boost Converter Control for Thermoelectric Energy Harvesting
Open this publication in new window or tab >>An Efficient Boost Converter Control for Thermoelectric Energy Harvesting
2013 (English)In: Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference on, IEEE conference proceedings, 2013, 385-388 p.Conference paper (Refereed)
Abstract [en]

This paper presents an ultra-low power controlcircuit for a DC-DC boost converter targeting implantablethermoelectric energy harvesting applications. Efficiency of theinput converter is enhanced by utilizing zero-current switchingtechnique. Adaptive delay between ON states of switches assureszero-voltage switching of synchronous rectifier and reducesswitching losses. The control circuit employing both techniquesconsumes an average power of 620nW. This allows the converterto operate from harvested power below 5μW. For voltageconversion ratios above 20, the proposed circuits and techniquesdemonstrate efficiency improvement compared to the state-of-the-art solutions.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2013
Keyword
bioelectronics, analog, microelectronics, low power, energy harvesting, dc-dc converters, control
National Category
Signal Processing
Identifiers
urn:nbn:se:kth:diva-140609 (URN)10.1109/ICECS.2013.6815435 (DOI)000339725900105 ()2-s2.0-84901466220 (Scopus ID)
Conference
2013 IEEE 20th International Conference on Electronics, Circuits, and Systems, ICECS 2013, Abu Dhabi, December 8-11, 2013
Funder
Swedish Research Council, 74327
Note

QC 20140205

Available from: 2014-01-28 Created: 2014-01-28 Last updated: 2017-05-05Bibliographically approved
2. Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors
Open this publication in new window or tab >>Analysis of Dead Time Losses in Energy Harvesting Boost Converters for Implantable Biosensors
2014 (English)In: NORCHIP, 2014, IEEE conference proceedings, 2014, 1-4 p.Conference paper, Published paper (Refereed)
Abstract [en]

Efficiency of an ultra-low power energy harvesting dc-dc converter depends on its losses and the power consumption of the control circuit. Unlike other loss mechanisms, losses related to dead times have not been thoroughly studied. Therefore, in most cases these losses are not adequately suppressed. This paper investigates dead time losses and their impact on the overall system efficiency. Simple expressions for fast estimation of dead time losses are derived. Analysis shows that in many applications where high voltage conversions are required, such as implantable biosensors, the efficiency reduction due to these losses can easily exceed 2%. The analysis is validated using an adaptive dead time circuit which minimizes the associated losses and improves the overall system efficiency according to the calculated values.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2014
Keyword
Implantable biosensors, energy harvesting, DC-DC converters, dead time losses
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-163558 (URN)10.1109/NORCHIP.2014.7004714 (DOI)2-s2.0-84921470245 (Scopus ID)
Conference
IEEE International Conference NORCHIP, Tampere, Finland, 27-28 October 2014
Funder
Swedish Research Council
Note

QC 20150408

Available from: 2015-04-08 Created: 2015-04-08 Last updated: 2017-05-05Bibliographically approved
3. A Dual-Output Thermoelectric Energy Harvesting Interface with 86.6% Peak Efficiency at 30 μW and Total Control Power of 160 nW
Open this publication in new window or tab >>A Dual-Output Thermoelectric Energy Harvesting Interface with 86.6% Peak Efficiency at 30 μW and Total Control Power of 160 nW
2016 (English)In: IEEE Journal of Solid-State Circuits, ISSN 0018-9200, E-ISSN 1558-173XArticle in journal (Refereed) Published
Abstract [en]

A thermoelectric energy harvesting interface based on a single-inductor dual-output (SIDO) boost converter is presented. A system-level design methodology combined with ultra-low power circuit techniques reduce the power consumption and minimize the losses within the converter. Additionally, accurate zero-current switching (ZCS) and zero-voltage switching (ZVS) techniques are employed in the control circuit to ensure high conversion efficiency at μW input power levels. The proposed SIDO boost converter is implemented in a 0.18 μm CMOS process and can operate from input voltages as low as 15 mV. The measurement results show that the converter achieves a peak conversion efficiency of 86.6% at 30 μW input power.

Place, publisher, year, edition, pages
IEEE Solid-State Circuits Society, 2016
Keyword
Boost converter, energy harvesting, single-inductor dual-output, zero-current switching, zero-voltage switching, dead time, low-power design
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-186514 (URN)10.1109/JSSC.2016.2561959 (DOI)2-s2.0-84986321427 (Scopus ID)
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20160517

Available from: 2016-05-12 Created: 2016-05-12 Last updated: 2017-05-05Bibliographically approved
4. An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters
Open this publication in new window or tab >>An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters
2016 (English)In: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo: IEEE, 2016, 504-507 p.Conference paper, Published paper (Refereed)
Abstract [en]

A theoretical analysis of losses in low power thermoelectric harvester interfaces is used to find expressions for properly sizing the power transistors according to the input voltage level. These expressions are used to propose an adaptive FET sizing technique that tracks the input voltage level and automatically reconfigures the converter in order to improve its conversion efficiency. The performance of a low-power thermoelectric energy harvesting interface with and without the proposed technique is evaluated by circuit simulations under different input voltage/power conditions. The simulation results show that the proposed technique improves the conversion efficiency of the energy harvesting interface up to 12% at the lowest input voltage/power levels.

Place, publisher, year, edition, pages
Monte Carlo: IEEE, 2016
Keyword
Energy harvesting, thermoelectric harvesting, boost converter, adaptive FET sizing, low power CMOS design
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering; Energy Technology
Identifiers
urn:nbn:se:kth:diva-203341 (URN)10.1109/ICECS.2016.7841249 (DOI)000399230200132 ()2-s2.0-85015291166 (Scopus ID)978-1-5090-6113-6 (ISBN)
Conference
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, Dec. 11-14, 2016.
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170320

Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2017-05-08Bibliographically approved
5. A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters
Open this publication in new window or tab >>A High-Efficiency Energy Harvesting Interface for Implanted Biofuel Cell and Thermal Harvesters
(English)In: IEEE transactions on power electronics, ISSN 0885-8993, E-ISSN 1941-0107Article in journal (Refereed) Submitted
Abstract [en]

A dual-source energy harvesting interface that combines energy from implanted glucose biofuel cell and thermoelectric generator is presented. A single-inductor dual-input dual-output boost converter topology is employed to efficiently transfer the extracted power to the output. A dual-input feature enables the simultaneous maximum power extraction from two harvesters, while a dual-output allows a control circuit to perform complex digital functions at nW power levels. The control circuit reconfigures the converter to improve the efficiency and achieve zero-current and zero-voltage switching. The measurement results of the proposed boost converter, implemented in a 0.18 μm CMOS process, show a peak efficiency of 89.5% when both sources provide a combined input power of 66 μW. In the single-source mode, the converter achieves a peak efficiency of 85.2% at 23 μW for the thermoelectric source and 90.4% at 29 μW for the glucose biofuel cell. The converter can operate from minimum input voltages of 10 mV for the thermoelectric source and 30 mV for the glucose biofuel cell. 

Keyword
Energy harvesting, DC-DC power conversion, CMOS integrated circuits, thermoelectric energy conversion, fuel cells
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-206586 (URN)
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-05 Created: 2017-05-05 Last updated: 2017-05-08Bibliographically approved

Open Access in DiVA

Doc_Thesis_JK(4335 kB)100 downloads
File information
File name FULLTEXT01.pdfFile size 4335 kBChecksum SHA-512
e690ac61dff2b3e4f1f29b8497ee7d03cf3f449f30708881788e35f40266f677fb54078ce9dfdb6f72d63b8e1d22c296873d1d2620793b4b193f2744a244472d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Katic, Janko
By organisation
Integrated Devices and Circuits
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 100 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 537 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf