Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Graphene-based CO2 sensing and its cross-sensitivity with humidity
KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits.ORCID iD: 0000-0003-4637-8001
KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics. (KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.)ORCID iD: 0000-0002-8222-3157
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
RWTH Aachen, Otto-Blumenthal-Str., 52074 Aachen, Germany .ORCID iD: 0000-0003-4552-2411
Show others and affiliations
2017 (English)In: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 7, p. 22329-22339Article in journal (Refereed) Published
Abstract [en]

We present graphene-based CO2 sensing and analyze its cross-sensitivity with humidity. In order to assess the selectivity of graphene-based gas sensing to various gases, measurements are performed in argon (Ar), nitrogen (N2), oxygen (O2), carbon dioxide (CO2), and air by selectively venting the desired gas from compressed gas bottles into an evacuated vacuum chamber. The sensors provide a direct electrical readout in response to changes in high concentrations, from these bottles, of CO2, O2, nitrogen and argon, as well as changes in humidity from venting atmospheric air. From the signal response to each gas species, the relative graphene sensitivity to each gas is extracted as a relationship between the percentage-change in graphene's resistance response to changes in vacuum chamber pressure. Although there is virtually no response from O2, N2 and Ar, there is a sizeable cross-sensitivity between CO2 and humidity occurring at high CO2 concentrations. However, under atmospheric concentrations of CO2, this cross-sensitivity effect is negligible – allowing for the use of graphene-based humidity sensing in atmospheric environments. Finally, charge density difference calculations, computed using density functional theory (DFT) are presented in order to illustrate the bonding of CO2 and water molecules on graphene and the alterations of the graphene electronic structure due to the interactions with the substrate and the molecules.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2017. Vol. 7, p. 22329-22339
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-206164DOI: 10.1039/C7RA02821KOAI: oai:DiVA.org:kth-206164DiVA, id: diva2:1091748
Note

QC 20170517

Available from: 2017-04-27 Created: 2017-04-27 Last updated: 2018-04-05
In thesis
1. Density Functional Theory Calculations for Graphene-based Gas Sensor Technology
Open this publication in new window or tab >>Density Functional Theory Calculations for Graphene-based Gas Sensor Technology
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nowadays, electronic devices span a diverse pool of applications, especially when getting smaller and smaller satisfying the more than Moore paradigm. To further develop this, studies focusing on material design toward electronic devices are crucial. Accordingly, we present a theoretical study investigating the possibility of graphene as a promising material for such electronic devices design. We focus on graphene and graphene-based sensors. Graphene is known to have outstanding electronic and mechanical properties making it a game changer in the electronic design in the so-called 'post-silicon' industry. It is stronger than steel yet the thinnest material ever known while overstepping copper regarding electronic conductivity.

In this thesis, we perform first-principle ab-initio density functional theory (DFT) calculations of graphene in different sensing ambient conditions, which allows fast, accurate and efficient investigations of the electronic structure properties. Principally, we centre our attention on the arising interactions between the adsorbates on top of the graphene sheet and the underlying substrates' surface defects. The combined effect of the impurity bands arising from these defects and the adsorbates reveals a doping influence within the graphene sheet. This doping behaviour is responsible for different equilibrium distances and binding energies for different adsorbate types as well as substrates. Moreover, we briefly investigate the same effect on double layered graphene under the same ambient conditions.

We extend the studies to involve various types of substrates with different surface conditions and different adhesion nature to graphene. We take into consideration the governing van der Waals interactions in describing the electronic structure properties taking place at the graphene sheet interfacing both with the substrates below and the adsorbates above. Furthermore, we investigate the possibility of passivating such action of graphene sensing towards adsorbates to inhibit the graphene's sensing action as devices passivation becomes a necessity for the ultimate purpose of achieving more than Moore applications. Which in turn result in the optimal integration of graphene-based devices with different other devices functionalities on the same resultant chip.

In summary, graphene, by means of first-principle calculations verification, shows a promising behaviour in the sensor functionality enabling more than Moore applications for further advances.

Abstract [sv]

Elektroniska komponenter används i allt vidare utsträckning, och deras användning ökar i takt med att de blir mindre och mindre samtidigt som deras prestanda ökar, enligt det paradigm som brukar kallas ''more than Moore''. För att att göra ytterligare framsteg i denna riktning är grundläggande studier som fokuserar på materialdesign och tillverkning av nya typer av elektroniska komponenter avgörande. I den här avhandlingen presenteras teoretiska studier av grafen-baserade komponenter. Grafen är ett mycket intressant material för framtidens elektroniska komponenter. Specifikt fokuserar vi på grafenbaserade gas-sensorer. Grafen är känt för att ha mycket ovanliga elektroniska och mekaniska egenskaper som gör det till ett unikt material för "post-silicon"-design av elektronik. Det är starkare än stål och är samtidigt världens tunnaste material. Samtidigt har det bättre elektrisk ledningsförmåga än koppar.

Täthetsfunktionalsteori (DFT) har använts för att beräkna hur den elektroniska strukturen hos grafen ändras som funktion av substratmaterial och typ av molekyler som adsorberats på grafenets yta. DFT är en beräkningsmetod som medger simuleringar med hög precision samtidigt som den är relativt snabb. I studierna har DFT kombinerats med olika modeller för van der Waals-interaktionen.En viktig aspekt i de studier vi presenterar här är interaktionen mellan adsorbat-molekylerna ovanpå grafenet och ytdefekterna hos det underliggande substratet. De orenhetsband som härrör från defekterna, i kombination med adsorbat-molekylerna, skapar en slags dopningseffekt som ändrar elektronstrukturen hos grafenet. Därmed kan även de elektriska transportegenskaperna ändras hos grafenet, vilket möjliggör elektrisk detektion av molekylerna.

Vi har även studerat sensorer byggda med dubbelskiktad grafen. Dessutom har vi gjort en systematisk studie av hur grafen binder till ett stort antal substrat samt även hur man kan passivisera grafen så att den elektriska ledningsförmågan inte ändras vid molekyladsorption. Detta sista är viktigt för "more than Moore"-tillmämpningar, där ett centralt designkriterium är att kunna integrera många funktioner på samma chip.

Place, publisher, year, edition, pages
Stockholm, Sweden, 2018: KTH Royal Institute of Technology, 2018. p. 75
Series
TRITA-SCI-FOU ; 2018:01
Keywords
graphene, ab-initio, humidity, carbon dioxide, substrate, DFT, vdW, first-principle, simulation, calculations
National Category
Condensed Matter Physics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-221639 (URN)978-91-7729-660-7 (ISBN)
Public defence
2018-02-09, Ka-Sal C (Sal Sven-Olof Öhrvik), Electrum 229 16440 Kista, Stockholm, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20180118

Available from: 2018-01-18 Created: 2018-01-18 Last updated: 2018-01-19Bibliographically approved

Open Access in DiVA

fulltext(2299 kB)52 downloads
File information
File name FULLTEXT01.pdfFile size 2299 kBChecksum SHA-512
8eb8cb19fd668213cfdb292fdd5303616bbf2fbe56b9637276ab055318103982076cccecf4aa0f61063b2a938459a201a750f00e1c987816fdd8676ce3befd1e
Type fulltextMimetype application/pdf

Other links

Publisher's full textPublisher

Search in DiVA

By author/editor
Smith, Anderson D.Elgammal, KarimFan, XugeLemme, Max C.Delin, AnnaRåsander, MikaelBergqvist, LarsSchröder, StephanFischer, Andreas C.Niklaus, FrankÖstling, Mikael
By organisation
Integrated devices and circuitsSeRC - Swedish e-Science Research CentreMaterials- and Nano PhysicsMicro and Nanosystems
In the same journal
RSC Advances
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 52 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 246 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf