Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Semantic Segmentation of Point Clouds Using Deep Learning
Linköping University, Department of Electrical Engineering, Computer Vision.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Semantisk Segmentering av Punktmoln med Deep Learning (Swedish)
Place, publisher, year, edition, pages
2017. , 58 p.
Keyword [en]
Semantic Segmentation, Point Clouds, Convolutional Neural Network, Deep Learning
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-136793ISRN: LiTH-ISY-EX--17/5029--SEOAI: oai:DiVA.org:liu-136793DiVA: diva2:1091059
Subject / course
Electrical Engineering
Supervisors
Examiners
Available from: 2017-04-28 Created: 2017-04-25 Last updated: 2017-04-28Bibliographically approved

Open Access in DiVA

fulltext(20527 kB)121 downloads
File information
File name FULLTEXT01.pdfFile size 20527 kBChecksum SHA-512
d27986dfb94c224012da21d2a957c14bd626851353f8b2958fd2ebd63d573b0b11648749b781fa5f6034a6ec8de177f757c5cde5bd58b197b7cde417126183ec
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Tosteberg, Patrik
By organisation
Computer Vision
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 121 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 257 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf