Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Calibration using a general homogeneous depth camera model
KTH, School of Computer Science and Communication (CSC).
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Kalibrering av en generell homogen djupkameramodell (Swedish)
Abstract [en]

Being able to accurately measure distances in depth images is important for accurately reconstructing objects. But the measurement of depth is a noisy process and depth sensors could use additional correction even after factory calibration. We regard the pair of depth sensor and image sensor to be one single unit, returning complete 3D information. The 3D information is combined by relying on the more accurate image sensor for everything except the depth measurement. We present a new linear method of correcting depth distortion, using an empirical model based around the constraint of only modifying depth data, while keeping planes planar. The depth distortion model is implemented and tested on the Intel RealSense SR300 camera. The results show that the model is viable and generally decreases depth measurement errors after calibrating, with an average improvement in the 50 percent range on the tested data sets.

Abstract [sv]

Att noggrant kunna mäta avstånd i djupbilder är viktigt för att kunna göra bra rekonstruktioner av objekt. Men denna mätprocess är brusig och dagens djupsensorer tjänar på ytterligare korrektion efter fabrikskalibrering. Vi betraktar paret av en djupsensor och en bildsensor som en enda enhet som returnerar komplett 3D information. 3D informationen byggs upp från de två sensorerna genom att lita på den mer precisa bildsensorn för allt förutom djupmätningen. Vi presenterar en ny linjär metod för att korrigera djupdistorsion med hjälp av en empirisk modell, baserad kring att enbart förändra djupdatan medan plana ytor behålls plana. Djupdistortionsmodellen implementerades och testades på kameratypen Intel RealSense SR300. Resultaten visar att modellen fungerar och i regel minskar mätfelet i djupled efter kalibrering, med en genomsnittlig förbättring kring 50 procent för de testade dataseten.

Place, publisher, year, edition, pages
2017. , p. 73
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:kth:diva-204614OAI: oai:DiVA.org:kth-204614DiVA, id: diva2:1085621
External cooperation
Magnus Burenius
Educational program
Master of Science in Engineering -Engineering Physics
Supervisors
Examiners
Available from: 2017-11-17 Created: 2017-03-29 Last updated: 2018-01-13Bibliographically approved

Open Access in DiVA

fulltext(8284 kB)336 downloads
File information
File name FULLTEXT01.pdfFile size 8284 kBChecksum SHA-512
959f4d31fd14767e218a583d2ffd079290ec91389e0fd11848f387e0b1260cb34a2f5f9b78f3b4c314aeacd6ebdd0d9139bc4c76643a7eb5ae061fca2aeab434
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 336 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 40 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf