Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Furan- and Thiophene-Based Auxochromes Red-shift Chlorin Absorptions and Enable Oxidative Chlorin Polymerizations
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.ORCID iD: 0000-0001-5403-9902
Show others and affiliations
2017 (English)In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 23, no 17, p. 4089-4095Article in journal (Refereed) Published
Abstract [en]

The de novo syntheses of chemically stable chlorins with five-membered heterocyclic (furane, thiophene, formylfurane and formylthiophene) substituents in selected meso- and beta-positions are reported. Heterocycle incorporation in the 3- and 13-positions shifted the chlorin absorption and emission to the red (up to lambdaem =680 nm), thus these readily incorporated substituents function analogously to auxochromes present in chlorophylls, for example, formyl and vinyl groups. Photophysical, theoretical and X-ray crystallographic experiments revealed small but significant differences between the behavior of the furan- and the thiophene-based auxochromes. Four regioisomeric bis-thienylchlorins (3,10; 3,13, 3,15 and 10,15) were oxidatively electropolymerized; the chlorin monomer geometry had a profound impact on the polymerization efficiency and the electrochemical properties of the resulting material. Chemical co-polymerization of 3,13-bis-thienylchlorin with 3-hexylthiophene yielded an organic-soluble red-emitting polymer.

Place, publisher, year, edition, pages
2017. Vol. 23, no 17, p. 4089-4095
Keyword [en]
chlorins, electrochemistry, photophysics, polymerization, porphyrinoids
National Category
Organic Chemistry
Research subject
Chemistry with specialization in Organic Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-317978DOI: 10.1002/chem.201604655ISI: 000399312700011PubMedID: 27859811OAI: oai:DiVA.org:uu-317978DiVA, id: diva2:1083882
Funder
Stiftelsen Olle Engkvist ByggmästareSwedish Research Council, 2013-4655Swedish Research Council, 2013-4763
Available from: 2017-03-22 Created: 2017-03-22 Last updated: 2017-12-28Bibliographically approved
In thesis
1. Development of Novel Hydroporphyrins for Light Harvesting and Sensitising NIR Lanthanide Luminescence
Open this publication in new window or tab >>Development of Novel Hydroporphyrins for Light Harvesting and Sensitising NIR Lanthanide Luminescence
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Chlorins, as the core structures of chlorophylls, have been extensively studied for harvesting solar energy, fluorescent imaging and photodynamic therapy against cancer. This thesis is concerned with design and synthesis of novel chlorins as antennae for harvesting light and sensitising near infrared lanthanide luminescence.

In the first part, a series of chlorin monomers, dimers and polymers were synthesised and their photophysical properties were characterised. The chlorin monomers were substituted with five-membered heterocycles, such as thiophenes and furans. These heterocycles function as auxochromes analogous to the natural ones in chlorophylls, and extend chlorin absorption and emission strongly to the red (up to λem = 680 nm). A borylation method was developed to prepare borylated chlorins, which gave access to directly linked chlorin dimers through Suzuki coupling reaction. Different regioisomers of chlorin dimer were prepared, including β-meso homodimers, meso-meso homodimers and heterodimers. The dimerisation resulted in red-shifted absorption and emission. Chlorin polymerisations were performed both electrochemically and chemically. Bis-thienylchlorins yielded chlorin films and an organic solvent soluble copolymer with hexylthiophene, respectively. These polymers from both polymerisations have red absorptions beyond 700 nm, and might be used as light-harvesting antennae.

In the second part, chlorins were used as chromophores to sensitise near infrared lanthanide luminescence. Two types of chlorin-lanthanide dyads were prepared through lanthanide coordination with cyclen derivatives and dipicolinic acids (DPA). The cyclen-based dyads were poorly soluble in water, thus their near infrared emissions were not observed. The other type of complexes was fully soluble in H2O and THF. Both Nd and Yb emission were recorded even upon excitation into the Q bands of chlorins. In the dyads with free base chlorins, the singlet state of chlorins might be involved in the sensitisation of lanthanide luminescence. These DPA-based dyads presented two-color emission based on one chlorin and two-color excitation based on one lanthanide ion. These dyads would enable in theory 4-color imaging.

In the last part, a microwave-assisted two-step synthesis was described to prepare dipyrromethanes, which are the key intermediates in the chlorin synthesis. This mild method took advantage of the nucleophilicity of pyrrole and the electrophilicity of N,N-dimethylaminomethyl pyrroles. The usually used acid catalysis is detrimental to many functionalities, thus our methods enable the synthesis of dipyrromethanes with acid sensitive groups or a formyl group.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 78
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1509
Keyword
chlorin, hydroporphyrin, chlorophyll analogues, light harvesting, lanthanide luminescence
National Category
Organic Chemistry
Research subject
Chemistry with specialization in Organic Chemistry
Identifiers
urn:nbn:se:uu:diva-319909 (URN)978-91-554-9898-6 (ISBN)
Public defence
2017-06-02, 2001, Ångstroöm laboratory, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-05-12 Created: 2017-04-10 Last updated: 2017-05-29

Open Access in DiVA

fulltext(2031 kB)80 downloads
File information
File name FULLTEXT01.pdfFile size 2031 kBChecksum SHA-512
bc210034f0167aaa328e50687a68d2758c400dcf5fc9fd6a30dd14316dd60e7a7876e34dc316f1569c080aad7bf48edc7aa91871e4424c481ae40e1c2c802267
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Xiong, RuishengArkhypchuk, AnnaOrthaber, AndreasBorbas, Eszter
By organisation
Molecular Biomimetics
In the same journal
Chemistry - A European Journal
Organic Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 80 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 403 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf