Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetic Properites in Alloy Systems
Luleå University of Technology, Department of Engineering Sciences and Mathematics, Material Science.
2017 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The attention for materials displaying high magnetocaloric effect (MCE) has grown during the past 30 years. One of the most important properties of MCE is the adiabatic temperature change ( ). The main aim of this work was to develop a method to measure the temperature change ( ) for magnetocaloric materials in a changing magnetic field.  A technique was developed where maximum reached  for Gadolinium was 1.19 K in a changing magnetic field of 1.3 T, however, this is lower value in comparison with previous studies (3.3 K in a changing magnetic field of 1 T, Bjørk, et al., 2010) which makes the developed method not sufficient enough to measure .

Furthermore, finding novel materials displaying high MCE is of great interest. MnFePSiB alloys display promising MCE properties but processing method is expensive and time consuming. Therefore, a MnFePSiB compound was simply remelted several times and heat treated to enhance its properties. The MnFePSiB alloy was remelted 1, 2 and 3 times after initial casting. Melting the material 3 times resulted improvement in both the magnetic and magnetocaloric properties due to enhanced homogeneity. The material melted 3 times was further heat treated to improve its magnetic magnetocaloric properties. Heat treating the material for 5 hours at 1373K improved the magnetic entropy change more than 10 times compared to the as cast sample,  was moved closer to room temperature and maximum  of 0.71 K was obtained. 

Place, publisher, year, edition, pages
2017.
Keywords [en]
Magnetocaloric effect, adiabatic temperature change, magnetic entropy change, magnetocaloric materials, magnetic refrigerator
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-62614OAI: oai:DiVA.org:ltu-62614DiVA, id: diva2:1083829
External cooperation
Sandvik
Subject / course
Student thesis, at least 30 credits
Educational program
Materials Engineering, master's level
Examiners
Available from: 2017-03-28 Created: 2017-03-22 Last updated: 2017-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

By organisation
Material Science
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf