Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Adaptive FET Sizing Technique for HighEfficiency Thermoelectric Harvesters
KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. (Integrated Circuits and Systems)ORCID iD: 0000-0002-2684-0724
KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. (Integrated Circuits and Systems)
KTH, School of Information and Communication Technology (ICT), Electronics, Integrated devices and circuits. (Integrated Circuits and Systems)ORCID iD: 0000-0003-3802-7834
2016 (English)In: 2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo: IEEE, 2016, p. 504-507Conference paper, Published paper (Refereed)
Abstract [en]

A theoretical analysis of losses in low power thermoelectric harvester interfaces is used to find expressions for properly sizing the power transistors according to the input voltage level. These expressions are used to propose an adaptive FET sizing technique that tracks the input voltage level and automatically reconfigures the converter in order to improve its conversion efficiency. The performance of a low-power thermoelectric energy harvesting interface with and without the proposed technique is evaluated by circuit simulations under different input voltage/power conditions. The simulation results show that the proposed technique improves the conversion efficiency of the energy harvesting interface up to 12% at the lowest input voltage/power levels.

Place, publisher, year, edition, pages
Monte Carlo: IEEE, 2016. p. 504-507
Keywords [en]
Energy harvesting, thermoelectric harvesting, boost converter, adaptive FET sizing, low power CMOS design
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering; Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-203341DOI: 10.1109/ICECS.2016.7841249ISI: 000399230200132Scopus ID: 2-s2.0-85015291166ISBN: 978-1-5090-6113-6 (electronic)OAI: oai:DiVA.org:kth-203341DiVA, id: diva2:1082028
Conference
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS), Monte Carlo, Monaco, Dec. 11-14, 2016.
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170320

Available from: 2017-03-15 Created: 2017-03-15 Last updated: 2017-05-08Bibliographically approved
In thesis
1. Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
Open this publication in new window or tab >>Highly-Efficient Energy Harvesting Interfaces for Implantable Biosensors
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Energy harvesting is identified as an alternative solution for powering implantable biosensors. It can potentially enable the development of self-powered implants if the harvested energy is properly handled. This development implies that batteries, which impose many limitations, are replaced by miniature harvesting devices. Customized interface circuits are necessary to correct for differences in the voltage and power levels provided by harvesting devices from one side, and required by biosensor circuits from another. This thesis investigates the available harvesting sources within the human body, proposes various methods and techniques for designing power-efficient interfaces, and presents two CMOS implementations of such interfaces.

Based on the investigation of suitable sources, this thesis focuses on glucose biofuel cells and thermoelectric harvesters, which provide appropriate performance in terms of power density and lifetime. In order to maximize the efficiency of the power transfer, this thesis undertakes the following steps. First, it performs a detailed analysis of all potential losses within the converter. Second, in relation to the performed analysis, it proposes a design methodology that aims to minimize the sum of losses and the power consumption of the control circuit. Finally, it presents multiple design techniques to further improve the overall efficiency.

The combination of the proposed methods and techniques are validated by two highly efficient energy harvesting interfaces. The first implementation, a thermoelectric energy harvesting interface, is based on a single-inductor dual-output boost converter. The measurement results show that it achieves a peak efficiency of 86.6% at 30 μW. The second implementation combines the energy from two sources, glucose biofuel cell and thermoelectric harvester, to accomplish reliable multi-source harvesting. The measurements show that it achieves a peak efficiency of 89.5% when the combined input power is 66 μW. 

Abstract [sv]

Energiskörd har identifierats som en alternativ lösning för att driva inplanterbara biosensorer. Det kan potentiellt möjliggöra utveckling av själv-drivna inplanterbara biosensorer. Denna utveckling innebär att batterier, som sätter många begränsningar, ersätts av miniatyriserade energiskördsenheter. Anpassade gränssnittskretsar är nödvändiga för att korrigera för de skillnader i spänning och effektnivå som produceras av de energialstrande enheterna, och de som krävs av biosensorkretsarna. Denna avhandling undersöker de tillgängliga källorna för energiskörd i den mänskliga kroppen, föreslår olika metoder och tekniker för att utforma effektsnåla gränssnitt och presenterar två CMOS-implementeringar av sådana gränssnitt.

Baserat på undersökningen av lämpliga energiskördskällor, fokuserar denna avhandling på glukosbiobränsleceller och termoelektriska energiskördare, som har lämpliga prestanda i termer av effektdensitet och livstid. För att maximera effektiviteten hos effektöverföringen innehåller denna avhandling följande steg. Först görs en detaljerad analys av alla potentiella förluster inom boost-omvandlare. Sedan föreslår denna avhandling en designmetodik som syftar till att maximera den totala effektiviteten och effektförbrukningen. Slutligen presenterar den flera designtekniker för att ytterligare förbättra den totala effektiviteten.

Kombinationen av de föreslagna metoderna och teknikerna är varierade genom två högeffektiva lågeffekts energigränssnittskretsar. Den första inplementeringen är ett termoelektriskt energiskördsgränssnitt baserat på en induktor, med dubbla utgångsomvandlare. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 86.6% vid 30 μW. Det andra genomförandet kombinerar energin från två källor, en glukosbiobränslecell och en termoskördare, för att åstadkomma en tillförlitlig multi-källas energiskördslösning. Mätresultaten visar att omvandlaren uppnår en maximal effektivitet av 89.5% när den kombinerade ineffekten är 66 μW. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. p. 84
Keywords
Energy harvesting interface, thermoelectric generator, glucose biofuel cell, power management, dc-dc converter, boost converter, zero-current switching, zero-voltage switching, implantable biosensor, Energiskördsgränssnitt, termoelektrisk generator, glukosbiobränslecell, energihantering, DC-DC-omvandlare, boost-omvandlare, inplanterbar biosensor
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Information and Communication Technology
Identifiers
urn:nbn:se:kth:diva-206588 (URN)978-91-7729-370-5 (ISBN)
Public defence
2017-06-09, Ka-Sal B (Sal Peter Weissglas), Kistagången 16, Stockholm, 13:00 (English)
Opponent
Supervisors
Projects
Mi-SoC
Funder
Swedish Research Council
Note

QC 20170508

Available from: 2017-05-08 Created: 2017-05-05 Last updated: 2017-05-09Bibliographically approved

Open Access in DiVA

fulltext(328 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 328 kBChecksum SHA-512
f02e72d072cdb0dbb34c591afd4c26c81c87a0a1fb9e8975f1f9fd86a034733ee764e19b0a6e05b32e2022e43459e96912bcaa47b8b2e15dcc12f9cbcee9bcbd
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopushttp://ieeexplore.ieee.org/document/7841249/

Search in DiVA

By author/editor
Katic, JankoRodriguez, SaulRusu, Ana
By organisation
Integrated devices and circuits
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf