Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Comparing van der Waals DFT methods for water on NaCl(001) and MgO(001)
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Structural Chemistry.
Show others and affiliations
2017 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 146, article id 064703Article in journal (Other (popular science, discussion, etc.)) Published
Place, publisher, year, edition, pages
2017. Vol. 146, article id 064703
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:uu:diva-315592DOI: 10.1063/1.4971790ISI: 000394577400037PubMedID: 28201901OAI: oai:DiVA.org:uu-315592DiVA, id: diva2:1074705
Funder
Swedish Research CouncilSwedish National Infrastructure for Computing (SNIC)Available from: 2017-02-15 Created: 2017-02-15 Last updated: 2018-04-11Bibliographically approved
In thesis
1. Water in and on ionic materials: Structure, energetics, and vibrations
Open this publication in new window or tab >>Water in and on ionic materials: Structure, energetics, and vibrations
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Many chemical and physical phenomena in nature, in industrial processes, and in our daily lives take place at water/solid interfaces. The aim of this thesis is to further our knowledge of such processes at a molecular level. Here theoretical calculations can provide new insights about molecular bonding, structure and dynamics and how these respond to the perturbations from the surroundings. Coalculations can also yield for example vibrational spectra to be directly compared with experimental ones and help in the interpretation. This thesis describes the results of quantum-mechanical and quantum-dynamical studies of water properties on ionic surfaces [NaCl(001), MgO(001) and CaO(001)] and in ionic hydrates [e.g Na2CO3∙10H2O, MgSO4∙11H2O, Al(NO3)3∙9H2O] with especial emphases on surface and interface systems. In particular, calculations of binding energies, OH stretching frequencies, in situ electric field, dipole moments and intra/intermolecular OH distances were performed and analyzed to probe the strength of the water–environment interplay and to disentangle the components of the perturbation. Furthermore, validation of a range of dispersion-inclusive DFT methods for binding energies of interface water and structure and vibrational properties of water in condensed systems also constitutes part of the thesis.

Two correlations among the investigated properties were established and extensively explored: (i) OH stretching frequency vs. H-bond distance to characterize the H-bond strength and patterns on the surfaces and (ii) OH stretching frequency vs. local electric field to understand the effect of the water/hydroxide environment on the calculated gas-to-bound OH frequency shift behaviour. It was found that both the intact and dissociated water molecules on MgO(001) and CaO(001) follow essentially the same frequency-distance correlations. However, if the frequency is instead correlated against the in situ electric field from the environment, water and hydroxide ion follow different “frequency vs. field” curves. Both water and hydroxide curves, however, can be described by the same model, namely by an electrostatic dipole model presented in the thesis. The gas-to-surface frequency shifts can be traced back to the competition between the signs and magnitudes of the permanent and induced dipole derivatives along the stretching coordinate. Furthermore, the “frequency vs. field” model offers useful insights into the frequency shifts of various surface H-bond motifs on the H2O/MgO interface induced by the adsorption of multilayer cold water.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 62
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1654
Keywords
DFT, dispersion interactions, OH stretching frequency, electric field, dipole moment, Hydrogen bond, ionic surfaces, ionic hydrates
National Category
Chemical Sciences
Identifiers
urn:nbn:se:uu:diva-347225 (URN)978-91-513-0296-6 (ISBN)
Public defence
2018-05-18, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2018-04-24 Created: 2018-03-27 Last updated: 2018-10-08

Open Access in DiVA

fulltext(8469 kB)38 downloads
File information
File name FULLTEXT01.pdfFile size 8469 kBChecksum SHA-512
fe30fec44001040656a2618fee228c28346a199d8714b5314fc5ce6a4482b9ab2c791288f724aedb48699c6c9dfed1795e8238f6ecb2a3d70a1e3b36e26ac6ea
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kebede, Getachew G.Spångberg, DanielMitev, Pavlin D.Broqvist, PeterHermansson, Kersti
By organisation
Structural Chemistry
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 473 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf