Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental validation of CFD model predicting wind effects on inclined-roof mounted photovoltaic modules
KTH, School of Industrial Engineering and Management (ITM), Energy Technology.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [sv]

I detta arbete, utvecklades flera CFD modeller för att identifiera och karakterisera el produktion från solceller med hänsyn till instrålning nivån och yttemperaturen. De genoförda experimentella arbete tyder på att när PV-modulen utsätts för väder och vind sker signifikanta förändringar av temperaturen på modulens yta. Förhållandet mellan vindströmningsfältet kring modulen i relation till förändringar i luftspalten samt takkonstruktionens utformning har inte studerats i detalj tidigare. I alla relevanta studier ansågs temperaturen på PV-ytorna vara konstanta. Men i självaverket varieras yttemperaturen och värmeöverföringsgraden beroende på vindströmningsförhållandena kring PV-ytan. Ytterligare förändringar i luftströmmen uppstår i samband med olika luftspalter och olika lutningar på takstrukturen.I den här uppsatsen modellerades vindströmmen med hjälp av en CFD på och kring PV-ytan. Experimenten genomfördes i specialbyggda vindtunnlar med lutande takuppsättningar där en fotovoltisk anordning (BAPV) sattes upp för att validera modellen. En tillfredsställande överensstämmelse observerades när data jämfördes med simulerings Datat.Reynolds Averages Navier Stokes med fasta tillståndslösare användes för att simulera en 3D-geometrisk modell av en BAPV-modul med ett stadigt inloppstillstånd. Denna studie undersöker vindströmningsfältet kring och nära modulens ytor. Vindflödeshastigheten (1-5 [m/s] och luftspalten under modulen (3,5;5,5 [cm]) varierades under studien. Dessutom, senare i denna uppsats studeras effekten av olika lutande takkonstruktioner med 3 olika geometrier. Resultatet visar signifikant känslighet i vindströmningsfältet på grund av små förändringar i lutningen av takkonstruktionen.

Abstract [en]

Different models have been developed to identify and characterize photovoltaic system output with regards to irradiation and temperature. Experimental investigation suggests that when PV module is subjected to wind then the temperature differences on the module surfaces shows significant changes. The relation of wind flow field around the module in respect to the changing air gap and detailed roof structure was never studied in detail. In all of relevant studies, temperature of the PV surfaces was regarded as constant, whereas both the temperature and heat transfer rate on the module surfaces are variable with respect to positions on the module affected by wind flow conditions. Further changes in air flow occur when subjected to different air gap and different inclined roof structure. In this thesis the wind flow modelling was constructed with CFD. Experiments were performed on purpose built wind tunnel with the inclined roof setup of inclined building applied photo voltaic setup (BAPV) to validate the modelling. A satisfactory agreement was observed while comparing with simulation data and experimental results. Reynolds Averaged Navier Stokes with steady state solver was used to simulate a 3D geometric model of a BAPV module with the steady inlet condition. This study investigates wind flow field around and on near surfaces of the module. Wind flow velocity (1-5 [m/s]) and gap underneath the module (3.5,5.5 [cm]) was varied to study. Moreover, later in this thesis the impact of the different inclined roof structure was also studied with 3 different geometries. The result shows significant sensitivities of wind flow field due to small changes of inclined roof structure.

Place, publisher, year, edition, pages
2016. , 33 p.
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-201033OAI: oai:DiVA.org:kth-201033DiVA: diva2:1072490
Supervisors
Examiners
Available from: 2017-02-08 Created: 2017-02-08Bibliographically approved

Open Access in DiVA

fulltext(2425 kB)112 downloads
File information
File name FULLTEXT01.pdfFile size 2425 kBChecksum SHA-512
4168da740471787e90a3793dea66e08b834ba13b5b9fc306622c8b5f9a663d4dac447e1c5a52d64c0c26f980e3ce29ec29f962b84e2077f5640ad5443ce1649b
Type fulltextMimetype application/pdf

By organisation
Energy Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 112 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 427 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf