CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt149",{id:"formSmash:upper:j_idt149",widgetVar:"widget_formSmash_upper_j_idt149",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt150_j_idt152",{id:"formSmash:upper:j_idt150:j_idt152",widgetVar:"widget_formSmash_upper_j_idt150_j_idt152",target:"formSmash:upper:j_idt150:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Small-amplitude steady water waves with vorticityPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2017. , p. 16
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1830
##### National Category

Fluid Mechanics and Acoustics Computational Mathematics Mathematical Analysis Ocean and River Engineering Applied Mechanics
##### Identifiers

URN: urn:nbn:se:liu:diva-134243DOI: 10.3384/diss.diva-134243ISBN: 9789176855874 (print)OAI: oai:DiVA.org:liu-134243DiVA, id: diva2:1069608
##### Public defence

2017-02-24, Nobel BL32, B-huset, Campus Valla, Linköping, 10:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt459",{id:"formSmash:j_idt459",widgetVar:"widget_formSmash_j_idt459",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt470",{id:"formSmash:j_idt470",widgetVar:"widget_formSmash_j_idt470",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt476",{id:"formSmash:j_idt476",widgetVar:"widget_formSmash_j_idt476",multiple:true}); Available from: 2017-01-30 Created: 2017-01-30 Last updated: 2017-02-09Bibliographically approved
##### List of papers

The problem of describing two-dimensional traveling water waves is considered. The water region is of finite depth and the interface between the region and the air is given by the graph of a function. We assume the flow to be incompressible and neglect the effects of surface tension. However we assume the flow to be rotational so that the vorticity distribution is a given function depending on the values of the stream function of the flow. The presence of vorticity increases the complexity of the problem and also leads to a wider class of solutions.

First we study unidirectional waves with vorticity and verify the Benjamin-Lighthill conjecture for flows whose Bernoulli constant is close to the critical one. For this purpose it is shown that every wave, whose slope is bounded by a fixed constant, is either a Stokes or a solitary wave. It is proved that the whole set of these waves is uniquely parametrised (up to translation) by the flow force which varies between its values for the supercritical and subcritical shear flows of constant depth. We also study large-amplitude unidirectional waves for which we prove bounds for the free-surface profile and for Bernoulli’s constant.

Second, we consider small-amplitude waves over flows with counter currents. Such flows admit layers, where the fluid flows in different directions. In this case we prove that the initial nonlinear free-boundary problem can be reduced to a finite-dimensional Hamiltonian system with a stable equilibrium point corresponding to a uniform stream. As an application of this result, we prove the existence of non-symmetric wave profiles. Furthermore, using a different method, we prove the existence of periodic waves with an arbitrary number of crests per period.

1. On bounds and non-existence in the problem of steady waves with vorticity$(function(){PrimeFaces.cw("OverlayPanel","overlay791981",{id:"formSmash:j_idt538:0:j_idt542",widgetVar:"overlay791981",target:"formSmash:j_idt538:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1295",{id:"formSmash:j_idt1295",widgetVar:"widget_formSmash_j_idt1295",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1348",{id:"formSmash:lower:j_idt1348",widgetVar:"widget_formSmash_lower_j_idt1348",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1349_j_idt1351",{id:"formSmash:lower:j_idt1349:j_idt1351",widgetVar:"widget_formSmash_lower_j_idt1349_j_idt1351",target:"formSmash:lower:j_idt1349:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});