Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SLAMIt A Sub-Map Based SLAM System: On-line creation of multi-leveled map
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
2017 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In many situations after a big catastrophe such as the one in Fukushima, the disaster area is highly dangerous for humans to enter. It is in such environments that a semi-autonomous robot could limit the risks to humans by exploring and mapping the area on its own. This thesis intends to design and implement a software based SLAM system which has potential to run in real-time using a Kinect 2 sensor as input.

The focus of the thesis has been to create a system which allows for efficient storage and representation of the map, in order to be able to explore large environments. This is done by separating the map in different abstraction levels corresponding to local maps connected by a global map.

During the implementation, this structure has been kept in mind in order to allow modularity. This makes it possible for each sub-component in the system to be exchanged if needed.

The thesis is broad in the sense that it uses techniques from distinct areas to solve the sub-problems that exist. Some examples being, object detection and classification, point-cloud registration and efficient 3D-based occupancy trees.

Abstract [sv]

I många situationer efter en stor katastrof, såsom den i Fukushima, är området ytterst farligt för människor att vistas. Det är i sådana miljöer som semi-autonomarobotar kan begränsa risken för människor genom att utforska och kartlägga området på egen hand. Det här exjobbet fokuserar på att designa och implementera ett mjukvarubaserat SLAM system med real-tids potential användandes en Kinect 2 sensor.

Exjobbet har fokuserat på att skapa ett system som tillåter effektiv lagring och representering av kartan för att tillåta utforskning utav stora områden. Det görs genom att separera kartan i olika abstraktionsnivåer, vilka korresponderar mot lokala kartor sammankopplade med en global karta.

Strukturen av system har tagit hänsyn till under utvecklingen för att tillåta modularitet. Vilket gör det möjligt att byta ut komponenter i systemet.

Det här exjobbet är brett i det avseende att det använder tekniker från flera olika områden för att lösa de sub-problem som finns. Några exempel är objektdetektion och klassificering, punkt-molnsregistrering och effektiva 3D-baserade okupationsträd.

Abstract [es]

Después de grandes catástrofes, cómo la reciente en Fukushima, está demasiado peligroso para permitir humanes a entrar. En estás situaciones estaría más preferible entrar con un robot semi-automático que puede explorar, crear un mapa de la ambiente y encontrar los riesgos que hay. Está obra intente de diseñar e implementar un sistema SLAM, con la potencial de crear está mapa en tiempo real, utilizando una camera Kinect 2.

En el centro de la tesis está el diseño de una mapa que será eficiente alojar y manejar, para ser utilizado explorando áreas grandes. Se logra esto por la manera de la separación del mapa en distintas niveles de abstracción qué corresponde a mapas métricos locales y una mapa topológica que conecta estas.

La estructura del sistema ha sido considerado para permitir utilizar varios tipos de sensores, además que permitir cambiar ciertas partes de la sistema.

Esté tesis cobra distintas áreas cómo lo de detección de objetos, estimación de la posición del sistema, registrar nubes de puntos y alojamiento de 3D-mapas.

Place, publisher, year, edition, pages
2017. , p. 40
Keywords [en]
SLAM, Kinect 2, Sub-map, Loop-closure, Object detection, CENTAURO EU-project
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:liu:diva-133974ISRN: LiTH-ISY-EX--16/5021--SEOAI: oai:DiVA.org:liu-133974DiVA, id: diva2:1065996
Subject / course
Electrical Engineering
Presentation
2017-01-03, Algoritmen, B-Huset Linköpings Universitet, Linköping, 13:00 (English)
Supervisors
Examiners
Available from: 2017-01-17 Created: 2017-01-17 Last updated: 2017-01-17Bibliographically approved

Open Access in DiVA

fulltext(7384 kB)218 downloads
File information
File name FULLTEXT01.pdfFile size 7384 kBChecksum SHA-512
18523901ae9d3e5a48a34c77dcdfc4608ca850ada2a0bb508519ee21a41bfff4756c8f03b28e68d5261c6a2af1f79d68508f1585af279ff51da13ba3f9c63a60
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Holmquist, Karl
By organisation
Computer VisionFaculty of Science & Engineering
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 218 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 767 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf