Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
External geometry of p-minimal surfaces
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8422-6140
1997 (English)In: Geometry from Pacific Rim / [ed] Berrick, A. Jon / Loo, Bonaventure / Wang, Hong-Yu, Walter de Gruyter, 1997, , p. 363–375p. 363-376Conference paper, Published paper (Refereed)
Abstract [en]

We introduce a new class of p-minimal surfaces. We shaw that the Gauss map of a two-dimensional p-minimal surface in R3 is quasiconformal . A counterpart to Bernstein's celebrated result about entire solutions of the minimal surface equation is obtained. A study of tubular p-minimal hypersurfaces is included. 

Place, publisher, year, edition, pages
Walter de Gruyter, 1997. , p. 363–375p. 363-376
Series
Dissertation from the Swedish Research School of Management and Information Technology (MIT). Dissertation
Series
De Gruyter Proceedings in Mathematics
Keywords [en]
Minimal surfaces, convex sets, the p-Laplace equation, quasiconformal maps
National Category
Geometry Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-133939DOI: 10.1515/9783110908961.363ISBN: 978-3-11-090896-1 (print)OAI: oai:DiVA.org:liu-133939DiVA, id: diva2:1065649
Conference
Geometry from Pacific Rim
Available from: 2017-01-16 Created: 2017-01-16 Last updated: 2017-01-25Bibliographically approved

Open Access in DiVA

fulltext(683 kB)27 downloads
File information
File name FULLTEXT01.pdfFile size 683 kBChecksum SHA-512
0dee2a8729c9c8cd6d4089df3c33fd5a77820b5c1eb1547a512bf7099246f0316e2022a9ec2f0b663eca83465b5ff6bd0630ce8619d5dc10741ada1105da0141
Type fulltextMimetype application/pdf

Other links

Publisher's full texthttps://www.degruyter.com/view/books/9783110908961/9783110908961.363/9783110908961.363.xml

Search in DiVA

By author/editor
Tkachev, Vladimir
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
GeometryMathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar
Total: 27 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 32 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf