Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical modelling of dynamic response of underground openings under blasting based on field tests
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.ORCID iD: 0000-0002-5872-5173
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.ORCID iD: 0000-0002-9766-0106
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering, Mining and Geotechnical Engineering.
Show others and affiliations
Number of Authors: 5
2016 (English)In: Proceedings of the 8th International Symposium on Ground Support in Mining and Underground Construction / [ed] E. Nordlund, T.H. Jones and A. Eitzenberger (eds), 2016Conference paper, Published paper (Refereed)
Abstract [en]

In order to assess the capacity of ground support systems when subjected to dynamic loading, simulated rockburst tests by using blasting have been conducted at LKAB Kiirunavaara underground mine. In this paper, a numerical simulation for one of the field tests is conducted using LS-DYNA code to numerically investigate the effect of the different aspects of the charge design including the initiation point and the geometry on the test results. In the simulation, an explosive material model is used to model the detonation of explosive used in field tests and the Riedel-Hiermaier -Thoma (RHT) material model is used to model the dynamic response of the rock mass. The decoupling effect between the explosive and the wall of borehole is also taken into account in the model. The numerical results show a similar particle vibration pattern and a crack pattern to those of the field measurment. The effects of the position of the initiation point and the charge structure on the dynamic response of rock mass are also discussed. The results can be a reference for blast design for future field tests.

Place, publisher, year, edition, pages
2016.
National Category
Other Civil Engineering
Research subject
Mining and Rock Engineering
Identifiers
URN: urn:nbn:se:ltu:diva-61089ISBN: 978-91-7583-804-5 (electronic)OAI: oai:DiVA.org:ltu-61089DiVA, id: diva2:1056733
Conference
Ground Support 2016 : 11/09/2016 - 14/09/2016
Available from: 2016-12-15 Created: 2016-12-15 Last updated: 2018-04-17Bibliographically approved

Open Access in DiVA

fulltext(1243 kB)526 downloads
File information
File name FULLTEXT01.pdfFile size 1243 kBChecksum SHA-512
39eabfd637054a6ece00f1d1de9b587dd376c582a53062aab25f884fb3f98fc87cada71ebaf446db4f86c1f049fb89e24252ab0b5e97a67bdb1343667c991c16
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Yi, ChangpingZhang, PingNordlund, ErlingShirzadegan, ShahinNyberg, Ulf
By organisation
Mining and Geotechnical Engineering
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 526 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 834 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf