Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermal Stability of Carbon Nanotubes and Role of Intercalation
Luleå University of Technology, Department of Engineering Sciences and Mathematics.
2016 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Research in carbon nanotubes (CNTs) has become a very active field in the past decades, with much interest in their electronic and mechanical properties. However, the thermal properties of CNTs are still not well understood, in particular the process of annealing; i.e. purification of samples by desorption of internal and external impurities. Understanding the response of carbon nanotubes to high temperatures is critical for proper characterization of CNTs and CNT-based materials; especially because purportedly non-destructive characterization techniques such as Raman spectroscopy can induce high temperatures through laser heating. This thesis delineates an experiment aimed at elucidating the annealing and destruction process of carbon nanotubes. The experiment consists of heat treatments of single-walled nanotubes (SWNTs), monitoring nanotube abundance and purity by Raman spectroscopy. The samples are HiPCO-produced SWNTs of very high purity, separated in open and closed (end-capped) tubes. They are wetted with H2O in order to fill the open tubes, but are otherwise kept in their raw (as-produced) form of flakes of bundled tubes. This means that they have a low thermal conductivity as compared to dispersed CNTs, making them sensitive to overheating. The samples are heated in both air and argon environments in order to study the effect of oxidation. It is found that all tubes exhibit some annealing after heat treatment at temperatures as low as 100 °C. Temperatures higher than that are sufficient to degrade the samples in the case of closed tubes, which are found to be more thermally sensitive than open tubes, especially in air environments as oxidation is found to be a major component of the destructive mechanisms of CNTs. With higher temperature heat treatments at 500 °C, some of the open tubes exhibit a further step of annealing. This correlates with tube diameter, thus indicating that this annealing step can be associated with the desorption water from the CNTs' interior. A transition is found after heat treatment at 600 °C, although the new phase is not conclusively established, with evidence pointing to either charge transfer (by way of intercalation of dopant atoms in CNTs) or graphitization. 

Place, publisher, year, edition, pages
2016. , p. 46
Keyword [en]
Carbon nanotubes, raman, cnt, thermal, nanomaterials, spectroscopy, heating, stability
National Category
Atom and Molecular Physics and Optics
Identifiers
URN: urn:nbn:se:ltu:diva-61074OAI: oai:DiVA.org:ltu-61074DiVA, id: diva2:1056207
Educational program
Engineering Physics and Electrical Engineering, master's level
Supervisors
Examiners
Available from: 2016-12-19 Created: 2016-12-14 Last updated: 2016-12-19Bibliographically approved

Open Access in DiVA

fulltext(8405 kB)517 downloads
File information
File name FULLTEXT01.pdfFile size 8405 kBChecksum SHA-512
14008cedf94fd719e11e2a515d37750214d12038a4b74c11de4505cf9758f1d9192d27a47eaef26b2bd8f23f537b36e2f1a59792f2a2690e00f4be53564fcb3c
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Landström, Anton
By organisation
Department of Engineering Sciences and Mathematics
Atom and Molecular Physics and Optics

Search outside of DiVA

GoogleGoogle Scholar
Total: 517 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 131 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf