CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt157",{id:"formSmash:upper:j_idt157",widgetVar:"widget_formSmash_upper_j_idt157",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt158_j_idt160",{id:"formSmash:upper:j_idt158:j_idt160",widgetVar:"widget_formSmash_upper_j_idt158_j_idt160",target:"formSmash:upper:j_idt158:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the asymptotic spectral distribution of random matrices: closed form solutions using free independencePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2013 (English)Licentiate thesis, monograph (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Department of Mathematics, Linköping University , 2013. , 56 p.
##### Series

Linköping studies in science and technology, ISSN 0280-7971 ; 1597
##### Keyword [en]

Spectral distribution, R-transform, Stieltjes transform, Free probability, Freeness, Asymptotic freeness
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:lnu:diva-58181ISBN: 9789175195964 (print)OAI: oai:DiVA.org:lnu-58181DiVA: diva2:1047452
##### Presentation

2013-06-03, Planck, Fysikhuset, Campus Valla, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt485",{id:"formSmash:j_idt485",widgetVar:"widget_formSmash_j_idt485",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt504",{id:"formSmash:j_idt504",widgetVar:"widget_formSmash_j_idt504",multiple:true});
Available from: 2016-11-21 Created: 2016-11-17 Last updated: 2016-11-21Bibliographically approved

The spectral distribution function of random matrices is an information-carrying object widely studied within Random matrix theory. In this thesis we combine the results of the theory together with the idea of free independence introduced by Voiculescu (1985).

Important theoretical part of the thesis consists of the introduction to Free probability theory, which justifies use of asymptotic freeness with respect to particular matrices as well as the use of Stieltjes and R-transform. Both transforms are presented together with their properties.

The aim of thesis is to point out characterizations of those classes of the matrices, which have closed form expressions for the asymptotic spectral distribution function. We consider all matrices which can be decomposed to the sum of asymptotically free independent summands.

In particular, explicit calculations are performed in order to illustrate the use of asymptotic free independence to obtain the asymptotic spectral distribution for a matrix Q and generalize Marcenko and Pastur (1967) theorem. The matrix Q is defined as

where X_{i} is *p × n* matrix following a matrix normal distribution, X_{i }~ *N _{p,n}(0, \sigma^2I, I)*.

Finally, theorems pointing out classes of matrices Q which lead to closed formula for the asymptotic spectral distribution will be presented. Particularly, results for matrices with inverse Stieltjes transform, with respect to the composition, given by a ratio of polynomials of 1st and 2nd degree, are given.

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1384",{id:"formSmash:lower:j_idt1384",widgetVar:"widget_formSmash_lower_j_idt1384",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1385_j_idt1387",{id:"formSmash:lower:j_idt1385:j_idt1387",widgetVar:"widget_formSmash_lower_j_idt1385_j_idt1387",target:"formSmash:lower:j_idt1385:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});