Change search
ReferencesLink to record
Permanent link

Direct link
On the asymptotic spectral distribution of random matrices: closed form solutions using free independence
Linköping University.
2013 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The spectral distribution function of random matrices is an information-carrying object widely studied within Random matrix theory. In this thesis we combine the results of the theory together with the idea of free independence introduced by Voiculescu (1985).

Important theoretical part of the thesis consists of the introduction to Free probability theory, which justifies use of asymptotic freeness with respect to particular matrices as well as the use of Stieltjes and R-transform. Both transforms are presented together with their properties.

The aim of thesis is to point out characterizations of those classes of the matrices, which have closed form expressions for the asymptotic spectral distribution function. We consider all matrices which can be decomposed to the sum of asymptotically free independent summands.

In particular, explicit calculations are performed in order to illustrate the use of asymptotic free independence to obtain the asymptotic spectral distribution for a matrix Q and generalize Marcenko and Pastur (1967) theorem. The matrix Q is defined as


where Xi is p × n matrix following a matrix normal distribution, Xi ~ Np,n(0, \sigma^2I, I).

Finally, theorems pointing out classes of matrices Q which lead to closed formula for the asymptotic spectral distribution will be presented. Particularly, results for matrices with inverse Stieltjes transform, with respect to the composition, given by a ratio of polynomials of 1st and 2nd degree, are given.

Place, publisher, year, edition, pages
Linköping: Department of Mathematics, Linköping University , 2013. , 56 p.
Linköping studies in science and technology, ISSN 0280-7971 ; 1597
Keyword [en]
Spectral distribution, R-transform, Stieltjes transform, Free probability, Freeness, Asymptotic freeness
National Category
Probability Theory and Statistics
URN: urn:nbn:se:lnu:diva-58181ISBN: 9789175195964 (print)OAI: diva2:1047452
2013-06-03, Planck, Fysikhuset, Campus Valla, 13:15 (English)
Available from: 2016-11-21 Created: 2016-11-17 Last updated: 2016-11-21Bibliographically approved

Open Access in DiVA

fulltext(3432 kB)8 downloads
File information
File name FULLTEXT01.pdfFile size 3432 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Pielaszkiewicz, Jolanta Maria
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 8 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 18 hits
ReferencesLink to record
Permanent link

Direct link