Change search
ReferencesLink to record
Permanent link

Direct link
The role of the androgen receptor and hydroxysteroid 17β dehydrogenase in breast cancer: Impact on tamoxifen treatment
Linköping University, Department of Clinical and Experimental Medicine, Division of Clinical Sciences. Linköping University, Faculty of Medicine and Health Sciences.
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The healthy breast is a tissue composed of centrally located milk producing glands connected to the nipple by ducts, surrounded by fat tissue and connective tissue. The growth of the breast is primarily mediated by the estrogens, while the androgens mediate tissue homeostasis and protect against growth signals. In breast cancer, the cells of the glands or ducts undergo malignant transformation, and start proliferating in an uncontrollable fashion. Breast cancer is the most common malignancy in women, and it is estimated that 10% of all women will be diagnosed with breast cancer during their life-time. The primary classification of breast cancer is based mainly on the expression of the estrogen receptor, and 70-80% of breast cancers are estrogen receptor positive, and are classified as luminal. The remaining breast cancers are classified into HER2 positive or triple negative breast cancer. Out of all breast cancers, ~80% are androgen receptor positive. This varies in different subtypes, however, with the highest expression in luminal and lowest expression in triple negative breast cancers. The role of androgen receptor varies depending on subtype. It is considered tissue-protective in luminal breast cancer, while it’s role in HER2 positive and triple negative breast cancers is less defined, but is generally considered to be associated with worse outcome. The primary treatment for breast cancer is surgery, followed by chemotherapy and/or radiotherapy to reduce the risk of recurrence. Treatment is also subtype specific, and luminal breast cancers in premenopausalwomen are treated using the estrogen receptor blocker (antagonist) tamoxifen, which blocks estrogen signaling. In postmenopausal women, luminal breast  cancers are treated using tamoxifen or aromatase inhibitors, which prevent the formation of estrogen. The knowledge of which patient will respond and who will develop treatment resistance is of great importance, and the development of markers which can be analyzed prior to treatment in order to reduce the risk of unwanted side effects or complications is the focus of a large body of research. One of the primary goals of this thesis was to establish biomarkers for prognosis and tamoxifen treatment in breast cancer, and paper I, paper II and paper III address this aim.

Steroid hormones, including estrogens and androgens, are normally synthesized from cholesterol in the adrenal gland, as well as in gender specific tissues such as ovaries in women or the testis or prostate in men. This synthesis takes place as a number of enzymatic conversions, mediated by several different enzymes, and the expression of these enzymes determines the final product of this conversion. In the adrenal gland, testis and prostate, androgens are the end-product, while the ovaries synthesize estrogens. These hormones are transported through the circulation, and upon reaching their target tissues, they mediate their effect. The impact of the steroids on their destination tissue is dependent on their relative concentration and exposure time, which in turn is dependent on the amount in the circulation, but also on the presence of local steroid converting enzymes, which are present in most tissues. The enzymes of the hydroxysteroid 17β dehydrogenase family are present in most tissues, primarily the oxidative member hydroxysteroid 17β dehydrogenase type 2, which facilitate the conversion of estrogens and androgens to the less active forms, thus protecting the tissues from their effect. In breast cancer, the reductive form, hydroxysteroid 17β dehydrogenase type 1 is often up-regulated, and mediates increased activation of estrogens, resulting in increased estrogen signaling, which results in increased proliferation and growth. The second goal of this thesis was to further study the role of hydroxysteroid 17β dehydrogenase enzymes in breast cancer, and paper I and paper IV address different  aspects of their role in breast cancer.

Following reduction of the expression of hydroxysteroid 17β dehydrogenase type 14, an oxidative member of the family, in breast cancer, the expression of C-X-C ligand 10 was found to be altered. In paper I, in order to determine the role of C-X-C ligand 10 and C-X-C receptor 3 in breast cancer, their expression was quantified using immunohistochemistry in breast cancer patients randomized to tamoxifen or no endocrine treatment irrespectively of estrogen receptor status. The expression of C-XC ligand 10 and C-X-C receptor 3 was found to be associated with increased tamoxifen treatment benefit in the estrogen receptor positive group of patients, indicating that they could be useful markers for determining which patient would respond well to this treatment. Further, C-X-C receptor 3 expression was associated with worse outcome in patients who did not receive tamoxifen, and could be a potential target for inhibitors in order to improve patient outcome. The role of the androgen receptor in breast cancer was evaluated. In paper II the expression was quantified using immunohistochemistry in the same cohort as in paper I. We show that in patients with estrogen receptor negative tumors, the androgen receptor is associated with worse outcome. In patients with high tumoral androgen receptor expression, tamoxifen signaling results in significant improvement in outcome, despite lack of the estrogen receptor. The opposite was observed in patients without tumoral androgen receptor expression, and tamoxifen treatment was associated with adverse outcome. Similar findings were made in the triple negative cases. In the luminal cases, the androgen receptor does not provide further information pertaining to outcome. In paper III we evaluated the role of mutations in the androgen receptor in the cohort of estrogen receptor-negative and androgen receptorpositive cases from paper II. The role of mutations in the androgen receptor appear to have a modest role in regard to patient outcome, but rs17302090 appear associated with tamoxifen treatment benefit. The modulation of the members of the hydroxysteroid 17β dehydrogenase in breast cancer is associated with changes in the local steroid balance, and has been associated with worse outcome and changes in the response to tamoxifen. Further, the inhibition of hydroxysteroid 17β dehydrogenase type 1 has been proposed as an alternate treatment for breast cancer, but no inhibitors are currently used in the clinic. In paper IV, we evaluated several different mechanisms by which the expression of hydroxysteroid 17β dehydrogenase type 1 and type 2 are modulated in breast cancer. We show that the most potent estrogen estradiol, in an estrogen receptor dependent fashion, can result in decreased hydroxysteroid 17β dehydrogenase type 1 expression, and a short term reduction in type 2 expression or long term increased type 2 expression. We also show that the most potent androgen, dihydrotestosterone, can increase hydroxysteroid 17β dehydrogenase type 2 expression, but has limited impact on hydroxysteroid 17β dehydrogenase type 1. Further, we show that a number of genes involved in breast cancer, and microRNA are involved in modulating the expression of the hydroxysteroid 17β dehydrogenase type 1 and type 2 in breast cancer. These findings could potentially be used as an alternative to inhibitors, and help modulate the steroidal balance in target tissue.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. , 39 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1546
National Category
Cancer and Oncology Pharmacology and Toxicology Pathobiology Other Clinical Medicine
Identifiers
URN: urn:nbn:se:liu:diva-132453DOI: 10.3384/diss.diva-132453ISBN: 9789176856581 (Print)OAI: oai:DiVA.org:liu-132453DiVA: diva2:1045997
Public defence
2016-12-02, Hasselquist, Hus 411, Campus US, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2016-11-11 Created: 2016-11-11 Last updated: 2016-11-15Bibliographically approved
List of papers
1. C-X-C ligand 10 and C-X-C receptor 3 status can predict tamoxifen treatment response in breast cancer patients
Open this publication in new window or tab >>C-X-C ligand 10 and C-X-C receptor 3 status can predict tamoxifen treatment response in breast cancer patients
Show others...
2014 (English)In: Breast Cancer Research and Treatment, ISSN 0167-6806, E-ISSN 1573-7217, Vol. 145, no 1, 73-82 p.Article in journal (Refereed) Published
Abstract [en]

To investigate the expression levels of CXCL10 and CXCR3 in tumors from breast cancer patients randomized to adjuvant tamoxifen treatment or no endocrine treatment, in order to further study the connection to prognosis and prediction of tamoxifen treatment outcome. Immunohistochemistry on tissue microarrays from 912 breast cancer patients randomized to tamoxifen or no endocrine treatment. CXCR3 status was found to be a prognostic tool in predicting distant recurrence, as well as reduced breast cancer-specific survival. In patients with estrogen receptor (ER)-positive tumors, tumors with strong CXCL10 levels had improved effect of tamoxifen treatment in terms of local recurrence-free survival [risk ratio (RR) 0.46 (95 % CI 0.25-0.85, P = 0.01)] compared with patients with tumors expressing weak CXCL10 expression. Further, patients with ER-positive tumors with strong CXCR3 expression had an improved effect of tamoxifen in terms of breast cancer-specific survival [RR 0.34 (95 % CI 0.19-0.62, P less than 0.001)] compared with the group with weak CXCR3 levels [RR 1.33 (95 % CI 0.38-4.79, P = 0.65)]. We show here for the first time that CXCL10 and CXCR3 expression are both predictors of favorable outcome in patients treated with tamoxifen.

Place, publisher, year, edition, pages
Springer Verlag (Germany), 2014
Keyword
CXCL10; CXCR3; Endocrine treatment; Prognosis; Tamoxifen
National Category
Medical and Health Sciences
Identifiers
urn:nbn:se:liu:diva-106833 (URN)10.1007/s10549-014-2933-7 (DOI)000334519400007 ()
Available from: 2014-05-28 Created: 2014-05-23 Last updated: 2016-11-11Bibliographically approved
2. Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-alpha-negative breast cancer
Open this publication in new window or tab >>Androgen receptor expression predicts beneficial tamoxifen response in oestrogen receptor-alpha-negative breast cancer
Show others...
2016 (English)In: British Journal of Cancer, ISSN 0007-0920, E-ISSN 1532-1827, Vol. 114, no 3, 248-255 p.Article in journal (Refereed) Published
Abstract [en]

Background: Although the androgen receptor (AR) is frequently expressed in breast cancer, its relevance in the disease is not fully understood. In addition, the relevance of AR in determining tamoxifen treatment efficiency requires evaluation. Purpose: To investigate the tamoxifen predictive relevance of the AR protein expression in breast cancer. Methods Patients were randomised to tamoxifen 40 mg daily for 2 or 5 years or to no endocrine treatment. Mean follow-up was 15 years. Hazard ratios were calculated with recurrence-free survival as end point. Results: In patients with oestrogen receptor (ER)-negative tumours, expression of AR predicted decreased recurrence rate with tamoxifen (hazard ratio (HR) = 0.34; 95% confidence interval (CI) = 0.14-0.81; P = 0.015), whereas the opposite was seen in the AR- group (HR = 2.92; 95% CI = 1.16-7.31; P = 0.022). Interaction test was significant P < 0.001. Patients with triple-negative and AR+ tumours benefitted from tamoxifen treatment (HR = 0.12; 95% CI = 0.014-0.95 P = 0.044), whereas patients with AR- tumours had worse outcome when treated with tamoxifen (HR = 3.98; 95% CI = 1.32-12.03; P = 0.014). Interaction test was significant P = 0.003. Patients with ER+ tumours showed benefit from tamoxifen treatment regardless of AR expression. Conclusions: AR can predict tamoxifen treatment benefit in patients with ER- tumours and triple-negative breast cancer.

Place, publisher, year, edition, pages
NATURE PUBLISHING GROUP, 2016
Keyword
Androgen receptor; breast cancer; tamoxifen; oestrogen receptor; triple-negative breast cancer
National Category
Cancer and Oncology
Identifiers
urn:nbn:se:liu:diva-125675 (URN)10.1038/bjc.2015.464 (DOI)000369223600003 ()26742006 (PubMedID)
Note

Funding Agencies|Swedish research council [A0346701]; Swedish cancer foundation [13 0435]

Available from: 2016-03-02 Created: 2016-02-29 Last updated: 2016-11-11

Open Access in DiVA

The role of the androgen receptor and hydroxysteroid 17β dehydrogenase in breast cancer: Impact on tamoxifen treatment(1043 kB)33 downloads
File information
File name FULLTEXT01.pdfFile size 1043 kBChecksum SHA-512
ac4a831eeff0ee38e7fe54d4ddf3b1d83327bfa2e269213e8caece7bef753ff5d8a0d3559b83f84f754941c38db319518fd495016d8480f69deab584fbdaacca
Type fulltextMimetype application/pdf
omslag(28 kB)20 downloads
File information
File name COVER01.pdfFile size 28 kBChecksum SHA-512
42dd0e38a25353924a4e43787586c755f804068943a30000e4f1eb986e8877abf47911d286509cb1397b11eac623880717426ae01f7058fd895641e1a79e82f5
Type coverMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Hilborn, Erik
By organisation
Division of Clinical SciencesFaculty of Medicine and Health Sciences
Cancer and OncologyPharmacology and ToxicologyPathobiologyOther Clinical Medicine

Search outside of DiVA

GoogleGoogle Scholar
Total: 33 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 131 hits
ReferencesLink to record
Permanent link

Direct link