Change search
ReferencesLink to record
Permanent link

Direct link
Improving Image Based Fruitcount Estimates Using Multiple View-Points
Linköping University, Department of Electrical Engineering, Computer Vision.
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This master-thesis presents an approach to track and count the number of fruit incommercial mango orchards. The algorithm is intended to enable precision agri-culture and to facilitate labour and post-harvest storage planning. The primary objective is to develop an multi-view algorithm and investigate how it can beused to mitigate the effects of visual occlusion, to improve upon estimates frommethods that use a single central or two opposite viewpoints. Fruit are detectedin images by using two classification methods: dense pixel-wise cnn and regionbased r-cnn detection. Pair-wise fruit correspondences are established between images by using geometry provided by navigation data, and lidar data is used to generate image masks for each separate tree, to isolate fruit counts to individual trees. The tracked fruit are triangulated to locate them in 3D space, and spatial statistics are calculated over whole orchard blocks. The estimated tree counts are compared to single view estimates and validated against ground truth data of 16 mango trees from a Bundaberg mango orchard in Queensland, Australia. The results show a high R2-value of 0.99335 for four hand labelled trees and a highest R2-value of 0.9165 for the machine labelled images using the r-cnn classifier forthe 16 target trees.

Place, publisher, year, edition, pages
2016. , 95 p.
Keyword [en]
Computer vision, epipolar geometry, fruit count, fruit yield, mango, mono camera, lidar
National Category
Signal Processing
URN: urn:nbn:se:liu:diva-132402ISRN: LiTH-ISY-EX--16/5003--SEOAI: diva2:1045302
External cooperation
Australian Centre for Field Robotics
Subject / course
Computer Vision Laboratory
Available from: 2016-11-14 Created: 2016-11-08 Last updated: 2016-11-14Bibliographically approved

Open Access in DiVA

fulltext(58947 kB)26 downloads
File information
File name FULLTEXT01.pdfFile size 58947 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Computer Vision
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 26 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 49 hits
ReferencesLink to record
Permanent link

Direct link