CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt170",{id:"formSmash:upper:j_idt170",widgetVar:"widget_formSmash_upper_j_idt170",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt178_j_idt181",{id:"formSmash:upper:j_idt178:j_idt181",widgetVar:"widget_formSmash_upper_j_idt178_j_idt181",target:"formSmash:upper:j_idt178:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Hilbert schemes and Rees algebrasPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2016. , p. vii, 49
##### Series

TRITA-MAT-A ; 2016:11
##### National Category

Algebra and Logic Geometry
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-195717ISBN: 978-91-7729-171-8 (print)OAI: oai:DiVA.org:kth-195717DiVA, id: diva2:1045297
##### Public defence

2016-12-08, F3, Lindstedtsvägen 26, Stockholm, 13:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt825",{id:"formSmash:j_idt825",widgetVar:"widget_formSmash_j_idt825",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt837",{id:"formSmash:j_idt837",widgetVar:"widget_formSmash_j_idt837",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt852",{id:"formSmash:j_idt852",widgetVar:"widget_formSmash_j_idt852",multiple:true});
##### Note

##### List of papers

The topic of this thesis is algebraic geometry, which is the mathematical subject that connects polynomial equations with geometric objects. Modern algebraic geometry has extended this framework by replacing polynomials with elements from a general commutative ring, and studies the geometry of abstract algebra. The thesis consists of six papers relating to some different topics of this field.

The first three papers concern the Rees algebra. Given an ideal of a commutative ring, the corresponding Rees algebra is the coordinate ring of a blow-up in the subscheme defined by the ideal. We study a generalization of this concept where we replace the ideal with a module. In Paper A we give an intrinsic definition of the Rees algebra of a module in terms of divided powers. In Paper B we show that features of the Rees algebra can be explained by the theory of coherent functors. In Paper C we consider the geometry of the Rees algebra of a module, and characterize it by a universal property.

The other three papers concern various moduli spaces. In Paper D we prove a partial generalization of Gotzmann’s persistence theorem to modules, and give explicit equations for the embedding of a Quot scheme inside a Grassmannian. In Paper E we expand on a result of Paper D, concerning the structure of certain Fitting ideals, to describe projective embeddings of open affine subschemes of a Hilbert scheme. Finally, in Paper F we introduce the good Hilbert functor parametrizing closed substacks with proper good moduli spaces of an algebraic stack, and we show that this functor is algebraic under certain conditions on the stack.

QC 20161110

Available from: 2016-11-10 Created: 2016-11-08 Last updated: 2016-11-10Bibliographically approved1. An intrinsic definition of the Rees algebra of a module$(function(){PrimeFaces.cw("OverlayPanel","overlay767499",{id:"formSmash:j_idt1002:0:j_idt1010",widgetVar:"overlay767499",target:"formSmash:j_idt1002:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Rees algebras of modules and coherent functors$(function(){PrimeFaces.cw("OverlayPanel","overlay767503",{id:"formSmash:j_idt1002:1:j_idt1010",widgetVar:"overlay767503",target:"formSmash:j_idt1002:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Total blow-ups of modules and universal flatifications$(function(){PrimeFaces.cw("OverlayPanel","overlay1045290",{id:"formSmash:j_idt1002:2:j_idt1010",widgetVar:"overlay1045290",target:"formSmash:j_idt1002:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Gotzmann's persistence theorem for finite modules$(function(){PrimeFaces.cw("OverlayPanel","overlay767506",{id:"formSmash:j_idt1002:3:j_idt1010",widgetVar:"overlay767506",target:"formSmash:j_idt1002:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. Explicit projective embeddings of standard opens of the Hilbert scheme of points$(function(){PrimeFaces.cw("OverlayPanel","overlay1045292",{id:"formSmash:j_idt1002:4:j_idt1010",widgetVar:"overlay1045292",target:"formSmash:j_idt1002:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Good Hilbert functors$(function(){PrimeFaces.cw("OverlayPanel","overlay1045294",{id:"formSmash:j_idt1002:5:j_idt1010",widgetVar:"overlay1045294",target:"formSmash:j_idt1002:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1878",{id:"formSmash:j_idt1878",widgetVar:"widget_formSmash_j_idt1878",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1931",{id:"formSmash:lower:j_idt1931",widgetVar:"widget_formSmash_lower_j_idt1931",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1932_j_idt1934",{id:"formSmash:lower:j_idt1932:j_idt1934",widgetVar:"widget_formSmash_lower_j_idt1932_j_idt1934",target:"formSmash:lower:j_idt1932:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});