Change search
ReferencesLink to record
Permanent link

Direct link
Flight Pattern Analysis: Prediction of future activity to calculate the possibility of collision between flying objects and structures
Mid Sweden University, Faculty of Science, Technology and Media, Department of Electronics Design.
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This report shows that a reliable motion detection is needed to make an accurate prediction of future activity. Several experiments are carried out to obtain information about the object ́s behaviour and the best settings for the motion detection. A moving object is captured using two cameras, for two image sequences, and motion detection is applied to the stereoscopic data. Background subtraction algorithm followed by image segmentation algorithm, morphology algorithm, and blob analy- sis are performed on the images to find the coordinates for the centroid of the moving object. Two models are created to make a statistical inter- pretation of the data: one model for the height over the width and one statistical model for the distance between the cameras and the moving object over the width. The mean and standard deviation values are calculated to make a reliable interpretation of the captured images and the moving object. The Kalman filter is used for the prediction of future activity. The filters of the statistical models are trained with the first coordinates of the detected balls, and the next coordinates are predicted.

Place, publisher, year, edition, pages
2016. , 68 p.
Keyword [en]
Motion Detection, Background Subtraction, Image Segmen- tation, Morphology, Blob-Analyse, Statistical Model, Prediction Of Future Activity, Kalman-Filter
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
URN: urn:nbn:se:miun:diva-29202Local ID: ET-V16-G3-002OAI: diva2:1045012
Subject / course
Electrical Engineering ET2
Available from: 2016-11-08 Created: 2016-11-08 Last updated: 2016-11-08Bibliographically approved

Open Access in DiVA

fulltext(1355 kB)17 downloads
File information
File name FULLTEXT01.pdfFile size 1355 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Department of Electronics Design
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 17 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 5 hits
ReferencesLink to record
Permanent link

Direct link