Change search
ReferencesLink to record
Permanent link

Direct link
High genetic variability of vagrant polar bears illustrates importance of population connectivity in fragmented sea ice habitats
Uppsala University, Disciplinary Domain of Science and Technology, Biology, Department of Ecology and Genetics, Evolutionary Biology. Senckenberg Gesell Nat Forsch, Senckenberg Biodivers & Climate Res Ctr BiK F, Frankfurt, Germany..
Senckenberg Res Inst, Conservat Genet Grp, Gelnhausen, Germany.;Nat Hist Museum Frankfurt, Gelnhausen, Germany..
Senckenberg Gesell Nat Forsch, Senckenberg Biodivers & Climate Res Ctr BiK F, Frankfurt, Germany.;Goethe Univ Frankfurt, Inst Ecol Evolut & Divers, Frankfurt, Germany..
Inst Expt Pathol, Keldur, Iceland.;Univ Iceland, Reykjavik, Iceland..
Show others and affiliations
2016 (English)In: Animal Conservation, ISSN 1367-9430, E-ISSN 1469-1795, Vol. 19, no 4, 337-349 p.Article in journal (Refereed) Published
Abstract [en]

Projections by the Intergovernmental Panel on Climate Change (IPCC) and sea ice forecasts suggest that Arctic sea ice will decline markedly in coming decades. Expected effects on the entire ecosystem include a contraction of suitable polar bear habitat into one or few refugia. Such large-scale habitat decline and fragmentation could lead to reduced genetic diversity. Here we compare genetic variability of four vagrant polar bears that reached Iceland with that in recognized subpopulations from across the range, examining 23 autosomal microsatellites, mitochondrial control region sequences and Y-chromosomal markers. The vagrants' genotypes grouped with different genetic clusters and showed similar genetic variability at autosomal microsatellites (expected heterozygosity, allelic richness, and individual heterozygosity) as individuals in recognized subpopulations. Each vagrant carried a different mitochondrial haplotype. A likely route for polar bears to reach Iceland is via Fram Strait, a major gateway for the physical exportation of sea ice from the Arctic basin. Vagrant polar bears on Iceland likely originated from more than one recognized subpopulation, and may have been caught in sea ice export during long-distance movements to the East Greenland area. Although their potentially diverse geographic origins might suggest that these vagrants encompass much higher genetic variability than vagrants or dispersers in other regions, the four Icelandic vagrants encompassed similar genetic variability as any four randomly picked individuals from a single subpopulation or from the entire sample. We suggest that this is a consequence of the low overall genetic variability and weak range-wide genetic structuring of polar bears - few dispersers can represent a large portion of the species' gene pool. As predicted by theory and our demographic simulations, continued gene flow will be necessary to counteract loss of genetic variability in increasingly fragmented Arctic habitats. Similar considerations will be important in the management of other taxa that utilize sea ice habitats.

Place, publisher, year, edition, pages
2016. Vol. 19, no 4, 337-349 p.
Keyword [en]
climate change, dispersal, genetic variability, habitat fragmentation, inbreeding, Arctic sea ice, Ursus maritimus, polar bear
National Category
Evolutionary Biology Ecology
URN: urn:nbn:se:uu:diva-305942DOI: 10.1111/acv.12250ISI: 000381208400006OAI: diva2:1044595
Available from: 2016-11-04 Created: 2016-10-24 Last updated: 2016-11-04Bibliographically approved

Open Access in DiVA

fulltext(669 kB)58 downloads
File information
File name FULLTEXT01.pdfFile size 669 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Kutschera, Verena E.
By organisation
Evolutionary Biology
In the same journal
Animal Conservation
Evolutionary BiologyEcology

Search outside of DiVA

GoogleGoogle Scholar
Total: 58 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 187 hits
ReferencesLink to record
Permanent link

Direct link