Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Historical Manuscript Production Date Estimation using Deep Convolutional Neural Networks
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Division of Visual Information and Interaction. Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology, Computerized Image Analysis and Human-Computer Interaction.
2016 (English)Conference paper (Refereed)
Abstract [en]

Deep learning has thus far not been used for dating of pre-modern handwritten documents. In this paper, we propose ways of using deep convolutional neural networks (CNNs) to estimate production dates for such manuscripts. In our approach, a CNN can either be used directly for estimating the production date or as a feature learning framework for other regression techniques. We explore the feature learning approach using Gaussian Processes regression and Support Vector Regression.The evaluation is performed on a unique large dataset of over 10000 medieval charters from the Swedish collection Svenskt Diplomatariums huvudkartotek (SDHK). We show that deep learning is applicable to the task of dating documents and that the performance is on average comparable to that of a human expert.

Place, publisher, year, edition, pages
2016.
Keyword [en]
Document analysis, Manuscripts, Document dating, Digital Humanities
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computerized Image Processing
Identifiers
URN: urn:nbn:se:uu:diva-306685OAI: oai:DiVA.org:uu-306685DiVA: diva2:1044057
Conference
International Conference on Frontiers in Handwriting Recognition (ICFHR), October 23-26, 2016, Shenzhen, China.
Projects
q2bq2b_vr2012
Funder
Swedish Research Council, 2012-5743Riksbankens Jubileumsfond, NHS14-2068:1
Available from: 2016-11-01 Created: 2016-11-01 Last updated: 2017-02-05
In thesis
1. Interpreting the Script: Image Analysis and Machine Learning for Quantitative Studies of Pre-modern Manuscripts
Open this publication in new window or tab >>Interpreting the Script: Image Analysis and Machine Learning for Quantitative Studies of Pre-modern Manuscripts
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The humanities have for a long time been a collection of fields that have not gained from the advancements in computational power, as predicted by Moore´s law.  Fields like medicine, biology, physics, chemistry, geology and economics have all developed quantitative tools that take advantage of the exponential increase of processing power over time.  Recent advances in computerized pattern recognition, in combination with a rapid digitization of historical document collections around the world, is about to change this.

The first part of this dissertation focuses on constructing a full system for finding handwritten words in historical manuscripts. A novel segmentation algorithm is presented, capable of finding and separating text lines in pre-modern manuscripts.  Text recognition is performed by translating the image data of the text lines into sequences of numbers, called features. Commonly used features are analysed and evaluated on manuscript sources from the Uppsala University library Carolina Rediviva and the US Library of Congress.  Decoding the text in the vast number of photographed manuscripts from our libraries makes computational linguistics and social network analysis directly applicable to historical sources. Hence, text recognition is considered a key technology for the future of computerized research methods in the humanities.

The second part of this thesis addresses digital palaeography, using a computers superior capacity for endlessly performing measurements on ink stroke shapes. Objective criteria of character shapes only partly catches what a palaeographer use for assessing similarity. The palaeographer often gets a feel for the scribe's style.  This is, however, hard to quantify.  A method for identifying the scribal hands of a pre-modern copy of the revelations of saint Bridget of Sweden, using semi-supervised learning, is presented.  Methods for production year estimation are presented and evaluated on a collection with close to 11000 medieval charters.  The production dates are estimated using a Gaussian process, where the uncertainty is inferred together with the most likely production year.

In summary, this dissertation presents several novel methods related to image analysis and machine learning. In combination with recent advances of the field, they enable efficient computational analysis of very large collections of historical documents.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. 95 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1475
Keyword
document analysis, machine learning, image analysis, digital humanities, document dating, writer identification, text recognition
National Category
Computer Vision and Robotics (Autonomous Systems)
Research subject
Computer Science
Identifiers
urn:nbn:se:uu:diva-314211 (URN)978-91-554-9814-6 (ISBN)
Public defence
2017-03-24, Tidskriftläsesalen, Carolina rediviva, Dag Hammarskjölds väg 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Projects
q2b
Available from: 2017-03-02 Created: 2017-01-31 Last updated: 2017-03-06

Open Access in DiVA

fulltext(1349 kB)47 downloads
File information
File name FULLTEXT01.pdfFile size 1349 kBChecksum SHA-512
512a16e61e1e51c71d79fcd6b84a1c4e516834fbb27f81cbb9cfcbd591d9bf74fa7f7094d41ee0ea9a8617d0cb6aa83ca4ffa27064736e5808a23d4999279644
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wahlberg, FredrikWilkinson, TomasBrun, Anders
By organisation
Division of Visual Information and InteractionComputerized Image Analysis and Human-Computer Interaction
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 47 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 229 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf