CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt157",{id:"formSmash:upper:j_idt157",widgetVar:"widget_formSmash_upper_j_idt157",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt158_j_idt160",{id:"formSmash:upper:j_idt158:j_idt160",widgetVar:"widget_formSmash_upper_j_idt158_j_idt160",target:"formSmash:upper:j_idt158:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

On the complexity of equation solving in process algebraPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
Number of Authors: 2
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 1991 (English)Report (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Kista, Sweden: Swedish Institute of Computer Science , 1991, 1. , 26 p.
##### Series

SICS Research Report, ISSN 0283-3638 ; R91:05
##### National Category

Computer and Information Science
##### Identifiers

URN: urn:nbn:se:ri:diva-22171OAI: oai:DiVA.org:ri-22171DiVA: diva2:1041714
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt485",{id:"formSmash:j_idt485",widgetVar:"widget_formSmash_j_idt485",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt495",{id:"formSmash:j_idt495",widgetVar:"widget_formSmash_j_idt495",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt504",{id:"formSmash:j_idt504",widgetVar:"widget_formSmash_j_idt504",multiple:true});
##### Note

Revised and extended version of a paper that will appear under the same title in the Proceedings of the Colloquium on Trees and Algebra in Programming, Brighton, England, April, 1991, published in Lecture Notes in Computer Science by Springer Verlag.Available from: 2016-10-31 Created: 2016-10-31Bibliographically approved

The problem of designing a system which in a given environment C should satisfy a given specification S can be formulated as "find a system P such that C(P) satisfies the specification S". In process algebra, such problems take the form of equations. We investigate the complexity of solving such equations in process algebra. We consider the problem of deciding whether there is a process P which satisfies an equation of one of the following forms : (the complete form could not be translated) where C is an arbitrary context of some process Algebra, A, B and Q are given processes, S is a modal specification, () is (weak) bisimulation equivalence, is refinement between modal specifications (a generalization of bisimulation equivalence), and | and \L is the parallel and restriction operator of CCS respectively. The main result is that all four problems are PSPACE-hard in the size of the given contexts, processes and specifications. The four problems are still PSPACE-hard if the right-hand side of the equations is required to be deterministic and the number of involved actions is bounded by a small constant. We also give constraints under which the first and third problem can be solved in polynomial time.

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1384",{id:"formSmash:lower:j_idt1384",widgetVar:"widget_formSmash_lower_j_idt1384",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1385_j_idt1387",{id:"formSmash:lower:j_idt1385:j_idt1387",widgetVar:"widget_formSmash_lower_j_idt1385_j_idt1387",target:"formSmash:lower:j_idt1385:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});