Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-4867-0391
Department of Instrumentation, SINTEF ICT, Norway.ORCID iD: 0000-0003-2047-4935
Department of Microsystems and Nanotechnology, SINTEF ICT, Norway.
Department of Microsystems and Nanotechnology, SINTEF ICT, Norway.
Show others and affiliations
2016 (English)In: Micromachines, ISSN 2072-666X, E-ISSN 2072-666X, Vol. 7, no 10, 192- p.Article in journal (Refereed) Published
Abstract [en]

Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS) transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based on low-temperature adhesive wafer bonding, which ensures full complementary metal-oxide-semiconductor (CMOS) compatibility. All necessary fabrication steps for the wafer bonding, such as cavity formation and deposition of the adhesive, are performed on the capping substrate. The polymer adhesive is deposited by spray-coating on the capping wafer containing the cavities. Thus, no lithographic patterning of the polymer adhesive is needed, and material waste is minimized. Furthermore, this process does not require any additional fabrication steps on the device wafer, which lowers the process complexity and fabrication costs. We demonstrate the proposed capping method by packaging two different MEMS devices. The two MEMS devices include a vibration sensor and an acceleration switch, which employ two different electrical interconnection schemes. The experimental results show wafer-level capping with excellent bond quality due to the re-flow behavior of the polymer adhesive. No impediment to the functionality of the MEMS devices was observed, which indicates that the encapsulation does not introduce significant tensile nor compressive stresses. Thus, we present a highly versatile, robust, and cost-efficient capping method for components such as MEMS and imaging sensors.

Place, publisher, year, edition, pages
Basel, Switzerland: Multidisciplinary Digital Publishing Institute (MDPI) , 2016. Vol. 7, no 10, 192- p.
Keyword [en]
micro electro-mechanical systems (MEMS), imaging sensor, packaging, adhesive wafer bonding, benzocyclobutene (BCB)
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-194173DOI: 10.3390/mi7100192ISI: 000389131300022OAI: oai:DiVA.org:kth-194173DiVA: diva2:1038438
Funder
EU, European Research Council, 277879Swedish Research Council, 621-2012-5364
Note

QC 20161019

Available from: 2016-10-18 Created: 2016-10-18 Last updated: 2017-05-18Bibliographically approved
In thesis
1. Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
Open this publication in new window or tab >>Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world.

Abstract [sv]

Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 55 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2017:048
Keyword
Nano-electromechanical systems (NEMS), Micro-electromechanical systems (MEMS), heterogeneous 3D integration, CMOS integration, Morethan- Moore (MtM), adhesive wafer bonding, NEM switch, FPGA, contact reliability, hermetic vacuum packaging, Cu low-temperature welding, through silicon vias (TSVs), magnetic self-assembly
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-207185 (URN)978-91-7729-431-3 (ISBN)
Public defence
2017-06-15, Q2, Osquldas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

20170519

Available from: 2017-05-19 Created: 2017-05-18 Last updated: 2017-05-19Bibliographically approved

Open Access in DiVA

fulltext(8330 kB)39 downloads
File information
File name FULLTEXT01.pdfFile size 8330 kBChecksum SHA-512
2259da74eff3867b4196cd17332d9d3871a2d3f3ee5f0d91c78b7b71c1708fa7b4a3953475fd98cd7906d542860285fb86357fe0f54528888496327f3c2ebb14
Type fulltextMimetype application/pdf

Other links

Publisher's full textPublished version

Search in DiVA

By author/editor
Bleiker, Simon J.Visser Taklo, Maaike MargreteNiklaus, Frank
By organisation
Micro and Nanosystems
In the same journal
Micromachines
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 39 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf