Change search
ReferencesLink to record
Permanent link

Direct link
Multilingual Semantic Parsing with a Pipeline of Linear Classifiers
Number of Authors: 1
2009 (English)In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task, 2009, 1, , 6 p.103-108 p.Conference paper (Refereed)
Abstract [en]

I describe a fast multilingual parser for semantic dependencies. The parser is implemented as a pipeline of linear classifiers trained with support vector machines. I use only first order features, and no pair-wise feature combinations in order to reduce training and prediction times. Hyper-parameters are carefully tuned for each language and sub-problem. The system is evaluated on seven different languages: Catalan, Chinese, Czech, English, German, Japanese and Spanish. An analysis of learning rates and of the reliance on syntactic parsing quality shows that only modest improvements could be expected for most languages given more training data; Better syntactic parsing quality, on the other hand, could greatly improve the results. Individual tuning of hyper-parameters is crucial for obtaining good semantic parsing quality.

Place, publisher, year, edition, pages
2009, 1. , 6 p.103-108 p.
Keyword [en]
Semantic Role Labelling
National Category
Computer and Information Science
URN: urn:nbn:se:ri:diva-15835OAI: diva2:1037858
Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task
Available from: 2016-10-18 Created: 2016-10-18

Open Access in DiVA

fulltext(110 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 110 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link