Change search
ReferencesLink to record
Permanent link

Direct link
Method development for isotope analysis of trace and ultra-trace elements in environmental matrices
Luleå University of Technology, Department of Civil, Environmental and Natural Resources Engineering.ORCID iD: 0000-0002-8147-1714
2016 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Metodutveckling för isotopanalyser av spår- och ultra-spårelement i miljömatriser (Swedish)
Abstract [en]

The increasing load of toxic elements entering the ecosystems, as a consequence of anthropogenic processes, has grown public awareness in the last decades, resulting in a great number of studies focusing on pollution sources, transport, distribution, interactions with living organisms and remediation. Physical/chemical processes that drive the uptake, assimilation, compartmentation and translocation of heavy metals in biota has received a great deal of attention recently, since elemental concentrations and isotopic composition in biological matrices can be used as  probes of both natural and anthropogenic sources. Further they can help to evaluate fate of contaminants and to assess bioavailability of such elements in nature. While poorly defined isotopic pools, multiple sources and fractionating processes add complexity to source identification studies, tracing is hindered mainly by poorly known or unidentified fractionating factors.

High precision isotope ratio measurements have found increasing application in various branches of science, from classical isotope geochronology to complex multi-tracer experiments in environmental studies. Instrumental development and refining separation schemes have allowed higher quality data to be obtained and played a major role in the recent progress of the field. The use of modern techniques such as inductively coupled plasma sector field mass spectrometry (ICP-SFMS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for trace and ultra-trace element concentrations and isotope ratio measurements have given new opportunities.  However, sources of errors must be accurately evaluated and avoided at every procedural step. Moreover, even with the utilization of sound analytical measurement protocols, source and process tracing in natural systems can be complicated further by spatial and temporal variability.

The work described in the present thesis has been focused primarily on analytical method development, optimization and evaluation (including sample preparation, matrix separation, instrumental analysis and data evaluation stages) for isotopic and multi-elemental analyses in environmental samples at trace and ultra-trace levels. Special attention was paid to evaluate strengths and limitations of the methods as applied to complex natural environments, aiming at correct interpretation of isotopic results in environmental forensics. The analytical protocols covered several isotope systems of both stable (Cd, B, Cr, Cu, Fe, Tl and Zn) and radiogenic (Os, Pb and Sr) elements.

Paper I was dedicated to the optimization and testing of a rapid and high sample throughput method for Os concentrations and isotope measurements by ICP-SFMS. If microwave (MW) digestion followed by sample introduction to ICP-SFMS by traditional solution nebulization (SN) offered unparalleled throughput important for processing large number of samples, high-pressure ashing (HPA) combined with gas-phase introduction (GPI) proved to be advantageous for samples with low (below 500 pg) analyte content. The method was applied to a large scale bio-monitoring case, confirming accumulation of anthropogenic Os in animals from an area affected by emissions from a stainless steel foundry.

The method for Cr concentrations and isotope ratios in different environmental matrices was optimized in Paper II. A coupling between a high pressure/temperature acid digestion and a one pass, single column matrix separation allowed the analysis of chromites, soils, and biological matrices (first Cr isotope study in lichens and mosses) by ICP-SFMS and MC-ICP-MS. With an overall reproducibility of 0.11‰ (2σ), the results suggested a uniform isotope composition in soil depth profiles. On the other hand a strong negative correlation found between δ53Cr and Cr concentrations in lichens and mosses indicates that airborne Cr from local anthropogenic source(s) is depleted in heavy isotopes, therefore highlighting the possibility of utilization of Cr isotopes to trace local airborne pollution source from steel foundries.  

Paper III describes development of high-precision Cd isotope ratio measurement by MC-ICP-MS in a variety of environmental matrices. Several digestion methods (HPA, MW, ultrawave and ashing) were tested for sample preparation, followed by analyte separation from matrix using ion-exchange chromatography. The reproducibility of the method (2σ for δ114Cd/110Cd) was found to be better than 0.1‰. The method was applied to a large number of birch leaves (n>80) collected at different locations and growth stages. Cd in birch leaves is enriched in heavier isotopes relative to the NIST SRM 3108 Cd standard with a mean δ114Cd/110Cd of 0.7‰. The fractionation is assumed to stem from sample uptake through the root system and element translocation in the plant and it exhibits profound between-tree as well as seasonal variations. The latter were compared with seasonal isotopic variations for other isotopic systems (Zn, Os, Pb) in the same trees to aid a better understanding of underlying processes.

In Paper IV the number of isotope systems studied was extended to include B, Cd, Cu, Fe, Pb, Sr, Tl and Zn. The analytical procedure utilized a high pressure acid digestion (UltraCLAVE), which provides complete oxidation of the organic material in biological samples, and a two-column ion-exchange separation which represents further development of the separation scheme described in Paper III. Such sample preparation ensures low blank levels, efficient separation of matrix elements, sufficiently high analyte recoveries and reasonably high sample throughput. The method was applied to a large number of biological samples (n>240) and the data obtained represent the first combined characterization of variability in isotopic composition for eight elements in leaves, needles, lichens and mushrooms collected from a geographically confined area.

To further explore the reason of variability observed, soil profiles from the same area were analyzed for both concentrations and isotopic compositions of B, Cd, Cr, Cu, Fe, Pb, Sr, Tl and Zn in Paper V. Results of this study suggest that the observed high variability can be dependent on operationally-defined fractions (assessed by applying a modified SEP to process soil samples) and on the typology of the individual matrix analyzed (assessed through the coupling of soil profile results to those obtained for other matrices: lysimetric waters, mushrooms, litter, needles, leaves and lichens).

The method development conducted in this work highlights the importance of considering all possible sources of biases/errors as well as possibility to use overlapping sample preparation schemes for multi-isotope studies. The results obtained for different environmental matrices represent a starting point for discussing the role of natural isotopic variability in isotope applications and forensics, and the importance of in-depth knowledge of the multiple parameters affecting the variability observed.

Place, publisher, year, edition, pages
Luleå: Luleå University of Technology, 2016.
Series
Doctoral thesis / Luleå University of Technology 1 jan 1997 → …, ISSN 1402-1544
National Category
Geochemistry
Research subject
Applied Geology
Identifiers
URN: urn:nbn:se:ltu:diva-59705ISBN: 978-91-7583-719-2ISBN: 978-91-7583-720-8 (pdf)OAI: oai:DiVA.org:ltu-59705DiVA: diva2:1034651
Public defence
2016-12-09, E632, Luleå University of Technology, Luleå, 10:00 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme
Available from: 2016-10-12 Created: 2016-10-12 Last updated: 2016-11-18Bibliographically approved

Open Access in DiVA

fulltext(10364 kB)4 downloads
File information
File name FULLTEXT01.pdfFile size 10364 kBChecksum SHA-512
637b73955d231bdba0b03340f3a06cf58271bd248b6769f221fb8f4c2707836b2ad01d8954ae7b939a729764261cc55bcf85797b18786663331c5113d5cd5108
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Pallavicini, Nicola
By organisation
Department of Civil, Environmental and Natural Resources Engineering
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 4 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 24 hits
ReferencesLink to record
Permanent link

Direct link