Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Langevin dynamics in magnetic disorder
2002 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This master thesis reports of two methods, both using Langevin dynamics to simulate the motion of a charged particle in a two-dimensional infinite sized randomly distributed magnetic field. One of the methods uses periodic boundary conditions to mimic the infinite field, while the other continously creates the field in front of the particle. Measurements of the magnetic friction from both these methods are carried out and discussed. Both methods give the same result for low velocities but differs significantly for high. A behavior that is explained though the periodic boundary conditions let the particles lock up in tracks and therefore can not mimic an infinite field. The non-periodic boundaries however, gives rise to measurements that to large extent agrees with prior analytic results in both the high and low velocity limit.

Place, publisher, year, edition, pages
2002.
Keyword [en]
Technology, Langevin dynamics, random magnetic field, magnetic disorder, magnetic friction, molecular dynamics, Langevindynamik, slumpmässiga magnetfält, magnetisk oordning, magnetisk, friktion
Keyword [sv]
Teknik
Identifiers
URN: urn:nbn:se:ltu:diva-58418ISRN: LTU-EX--02/075--SELocal ID: effc1a05-d587-4575-9304-3ac9b60fe887OAI: oai:DiVA.org:ltu-58418DiVA: diva2:1031806
Subject / course
Student thesis, at least 30 credits
Educational program
Engineering Physics, master's level
Examiners
Note
Validerat; 20101217 (root)Available from: 2016-10-04 Created: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(608 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 608 kBChecksum SHA-512
2653121d9e320f8a9acfed0cedc7ef0026bf63ccfdd093c5d04406e5ea5cbc4a66ef87fff7bf217459f7582c69abbce48e1ca75754c4bdd5fad93bbed6306833
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf