Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reduction of Fine Particle and Deposit Forming Alkali by Co-Combustion of Peat With Wood Pellets in 150 kWth Grate Firing Boiler
2011 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

The objective of the present work was to demonstrate the possibilities to reduce the emission of fine particle forming alkali during co-combustion of wood with peat in a full scale (150 kW) grate fired boiler. For this purpose the particle emissions from a 150 kW district heating grate fired boiler situated in northern part of Kramfors, Sweden, were studied. During the experiment the district heating boiler was fired with sawdust fuel with a 0, 10 and 20 wt-% (zero, low, high) peat content respectively. Mass concentrations and particle size distribution were measured by using a DLPI (13-step low-pressure cascade impactor) with a precyclone. The particle matter was analyzed for morphology and elemental composition using SEM/EDS (Scanning electron microscopy/energy dispersive spectroscopy). In addition, chemical equilibrium model calculations were used to interpret the experimental findings. The present study clearly shows that reduction of fine particles (< 1 um) is possible when co-combusting wood pellets with peat pellets in grate fired boilers. When 10 wt % peat was added to the wood/peat fuel mixture the fraction of fine particles was significantly decreased (about half of that emitted during pure softwood pellet combustion). The fine particles were for all fuel types/mixtures dominated by potassium, chlorine, sulfur, sodium and zinc. The result from this work therefore shows that a significant reduction of fine particle alkali is possible when co-combusting wood pellets with peat. The results from the thermo-chemical calculations suggest that a significant share of the potassium is retained in the bottom ash as a K rich silicate slag and as KAlSi2O6(s) (Leucite) when co-combusting sawdust with peat.

Place, publisher, year, edition, pages
2011. , 30 p.
Keyword [en]
Technology, Reduction of alkali and fine particle emission
Keyword [sv]
Teknik
Identifiers
URN: urn:nbn:se:ltu:diva-55062Local ID: bf85d7a4-abe4-4c14-a8a9-e98070798a92OAI: oai:DiVA.org:ltu-55062DiVA: diva2:1028443
Subject / course
Student thesis, at least 30 credits
Educational program
Energy Engineering, master's level
Examiners
Note
Validerat; 20110920 (anonymous)Available from: 2016-10-04 Created: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(831 kB)64 downloads
File information
File name FULLTEXT02.pdfFile size 831 kBChecksum SHA-512
20fe5e253d6913e13c6219157eb06e6abf14902639306b433a4dec97e2e11ae00a1446cc7429de868e818d389bad22f50bb1b0a3c2b9896cada40432b24fdc9a
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Nigusie, Kiflom Gebrehiwot

Search outside of DiVA

GoogleGoogle Scholar
Total: 64 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf