Change search
ReferencesLink to record
Permanent link

Direct link
Privacy-Preserving Big Data in an In-Memory Analytics Solution
2016 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In the modern information society, a high volume and a tremendous variety of data are produced at any given time and are facilitated by technological advances. Commercial organizations have been the first to embrace this change and most organizations employ a wide range of information systems to support their work as a result. As the number of systems increases, the usage also increases, which results in more data being produced. Social networks are another phenomenon that also contributes to the tremendous growth of data. This exceptional amount of data is referred to by a new term, “big data”. Several properties are associated with the term big data, but the most important properties are volume, velocity, variety and veracity. This implies that, in the context of big data analytics, volumes and varieties of data from multiple sources are collected, cleansed, processed and analyzed to support making decisions or finding solutions to problems. However, in some cases, the requirements are to provide these capabilities in real time. This is called real-time big data analytics, which implies that analytical steps are performed in real time, but this could be quite demanding in terms of implementation and operations. In addition, it also introduces new challenges in the form of applying and maintaining security, and one of the areas of concern is how to preserve privacy when publishing data, especially when considering analytical scenarios in which a high degree of accuracy is required to make decisions. In conclusion, privacy is critical because, if sensitive data fall into the wrong hands, this could have serious consequences. Thus, the purpose of this thesis is to study multiple models for privacy preservation in an In-memory based real-time big data analytics solution, and to subsequently evaluate and analyze the outcome to propose one optimum model that supports the privacy requirements without compromising the analytical aspect of the solution. The result shows that a newly developed model using native capabilities of such environment fulfills all the requirements including the most important requirement of high data accuracy.

Place, publisher, year, edition, pages
2016. , 96 p.
Keyword [en]
Social Behaviour Law, real time, big data analytics, In-memory, data utility, privacy preservation, analytical privilege, SAP HANA
Keyword [sv]
Samhälls-, beteendevetenskap, juridik
URN: urn:nbn:se:ltu:diva-54266Local ID: b389fdf8-89b6-4336-bfed-564301cca20aOAI: diva2:1027647
Subject / course
Student thesis, at least 30 credits
Educational program
Information Security, master's level
Validerat; 20160616 (global_studentproject_submitter)Available from: 2016-10-04 Created: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(3421 kB)31 downloads
File information
File name FULLTEXT02.pdfFile size 3421 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Somasekaram, Premathas

Search outside of DiVA

GoogleGoogle Scholar
Total: 31 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 156 hits
ReferencesLink to record
Permanent link

Direct link