Change search
ReferencesLink to record
Permanent link

Direct link
SNR Characterization in RapidEye Satellite Images
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This report outlines an entirely new method of automatically detecting homo-geneous regions in images for the purpose of noise characterization. The methodwas developed with the support of BlackBridge AG in Berlin, Germany. The aim ofthe method was to characterize the signal-to-noise ratio as a function of radianceof the multi-spectral image sensors aboard the RapidEye satellite constellation.The method uses the random nature of noise in order to detect homogeneous im-age regions. The method works by dividing an image into multiple square tiles.Each tile is then corrupted with additive Poisson noise (Gaussian noise with zeromean and a standard deviation equal to the tile mean). The Pearson CorrelationCoefficient between the corrupted tile and the original tile is then used as a ho-mogeneity criterion. It was found that a Pearson Correlation Coefficient of lessthan 0.7 identifies homogeneous regions. When applied to RapidEye images, themethod correctly identified homogeneous regions and allowed the characteriza-tion of the signal-to-noise ratio of the RapidEye image sensors across their dy-namic range. Three case studies of Level 3A RapidEye image products are pre-sented herein. These clearly demonstrate the high quality of RapidEye images aswell as the effectiveness of the described method.

Place, publisher, year, edition, pages
2014. , 49 p.
Keyword [en]
Technology, RapidEye, Noise, Images, Estimation, Satellite, Signal-to-noise, SNR
Keyword [sv]
URN: urn:nbn:se:ltu:diva-53342Local ID: a5ef9067-143d-4ddd-bf92-a698cb7fcedeOAI: diva2:1026716
External cooperation
Subject / course
Student thesis, at least 30 credits
Educational program
Space Engineering, master's level
Validerat; 20141003 (global_studentproject_submitter)Available from: 2016-10-04 Created: 2016-10-04Bibliographically approved

Open Access in DiVA

fulltext(5981 kB)0 downloads
File information
File name FULLTEXT02.pdfFile size 5981 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

ReferencesLink to record
Permanent link

Direct link